期刊文献+

遮蔽与解蔽:算法推荐场域中的意识形态危局 被引量:35

Shadowing and Unmasking: Ideological Crisis in Algorithmic Recommendation Fields
原文传递
导出
摘要 作为大数据技术在信息传播领域的前沿应用,算法推荐实现了信息与人之间的精准高效匹配,满足了用户多元化、个性化的信息需求。与此同时,推荐过程中造就的"茧房效应"、"马太效应"、"过滤气泡"和"全景监狱",也使得受众的喜好固化、视野窄化、价值观极化,导致作为"普遍适用参照点"的主流意识形态被算法遮蔽。新时代摆脱算法推荐场域中的意识形态危局,要进行技术的内部矫正,借助人文的外部弥合,加强法治的全程约束,完善媒介素养的教育,通过多种举措的协同联动,实现技术逻辑和价值逻辑的融合统一。 As the frontier application of big data technology in the field of information dissemination,algorithm recommendation achieves accurate and efficient matching between information and people,and meets the diversified and personalized information needs of users.At the same time,the"cocoon room effect","Matthew effect","filter bubble"and"panoramic prison"created in the recommendation process also solidify the audience’s preferences,narrow vision,polarization of values,leading to the mainstream ideology as a"universal reference point"being masked by the algorithm.In the new era,in order to get rid of the ideological crisis in the field of algorithm recommendation,we should carry out the internal correction of technology,strengthen the overall restraint of the rule of law with the help of the external closure of humanities,improve the education of media literacy,and realize the integration and unification of technical logic and value logic through the coordination and linkage of various measures.
作者 薛永龙 汝倩倩 XUE Yong-long;RU Qian-qian(School of Marxism,Anhui University,Hefei 230601,China)
出处 《自然辩证法研究》 CSSCI 北大核心 2020年第1期50-55,共6页 Studies in Dialectics of Nature
关键词 算法推荐 意识形态 技术悖论 价值逻辑 algorithmic recommendation ideology technological paradox value logic
  • 相关文献

参考文献7

二级参考文献38

  • 1利萨·泰勒、安德鲁·威利斯.《媒介研究:文本、机构与受众》,北京,北京大学出版社,吴靖、黄佩译,2005年,第143页.
  • 2《列宁选集》第1卷,北京:人民出版社1995年版,第274页.
  • 3Joseph A Konstan, Bradley N Miller,David Maltz,et al. Grou-pLens : Applying Collaborative Filtering to Usenet news [ J].Commun. ACM,1997,40(3) :77-87.
  • 4Yang S, Long B,Smole A,et al. Collaborative Competitive Filte-ring :Learning Recommender Using Context for User Choice[A]//Proceedings of the 34th International ACM SIGIR Confer-ence on Research and Development in Information Retrieval (SI-GIR 11)[C]. New York, NY, USA:ACM,2011:295-304.
  • 5Linden G,Smith B, York J Amazon. Com Recommendations:I-tem-to-item Collaborative Filtering[ J]. IEEE Internet Compu-ting,2003,7(1) :76-80.
  • 6Goldberg K,Roeder T, Gupta D, et al. Eigentaste: A ConstantTime Collaborative Filtering Algorithm[ J]. Information RetrievalJ,2001,4(2) :133-151.
  • 7Fabiano Belem,Eder Martins,Tatiana Pontes, et al. AssociativeTag Recommendation Exploiting Multiple Textual Features[A]//Proceedings of the 34th International ACM SIGIR Confer-ence on Research and Development in Information [ C]. NewYork, NY, USA: ACM, 2011:1033-1042.
  • 8Dong A,Zhang R, Kolari P,et al. Time is of the Essence : Impro-ving Recency Ranking Using Twitter Data[ A]. Proceedings ofthe 19th Int. Conf. on World Wide Web (WWW) [C]. NewYork, NY, USA:ACM,2010:331-340.
  • 9Chen J, Naim R, Nelson L, et al. Short and Tweet: Experi-ments on Recommending Content From Information Streams[A]. Proceedings of the 28 th International Conference on HumanFactors in Computing Systems (CHI 10) [ C]. New York, NY,USA: ACM, 2010: 1185-1194.
  • 10Fabian Abel, Qi Gao, Geert-Jan Houben, et al. Analyzing UserModeling on Twitter for Personalized News Recommendations[A]// Proceedings of the 19th International Conference[C].Girona, Spain:UMAP,2011 :1-12.

共引文献1641

同被引文献296

引证文献35

二级引证文献333

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部