期刊文献+

移动机器人路径动态规划有向D~*算法 被引量:28

Directed D~* algorithm for dynamic path planning of mobile robots
下载PDF
导出
摘要 针对传统D~*路径规划算法搜索效率低、成本较高的问题,提出有向D~*算法.该算法考虑目标点与障碍物信息,引入关键节点概念,逐级扩展确定可行路径,并且引入导向函数以控制单次搜索的节点搜索范围来提高搜索效率;在原欧几里得评价指标的基础上引入路径平滑度函数对偏移路径进行惩罚,避免机器人无效转弯而增加移动成本;通过路径平滑度函数中的"转弯因子"协调路径长度与平滑度之间的关系,给出路径平滑度函数的分段原理与转弯因子的确定方法,并对算法收敛性进行证明.在不同环境下的仿真实验表明,该算法较传统算法能更好地兼顾局部搜索与全局最优性,尤其适用于障碍物较多的复杂环境. A directed D~*route planning algorithm was proposed,aiming at the low efficiency and high cost of the traditional D~*route planning algorithms.In the proposed directed D*algorithm,the key nodes are defined by utilizing the location information of target points and obstacles so that the feasible routes could be determined by a stepwise expanding way,and a directed function is introduced to control the single searching range of nodes in order to improve the searching efficiency.A path smoothness function which punishes the deviation of paths is introduced to the algorithm in addition to Euclidean evaluation function,in order to avoid the redundant turning of robots and reduce the costs.The length of the path and the smoothness are taken into account simultaneously by the turning factor of the path smoothness function.The piecewise principle of the path smoothness function and the determining method of the turning factor are proposed.The convergence of the algorithm was also proved.Simulation experiments in different environments show that the proposed algorithm can balance the local searching and the global optimality,and it is especially suitable for complex environments with many obstacles.
作者 刘军 冯硕 任建华 LIU Jun;FENG Shuo;REN Jian-hua(School of Electromechanical Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第2期291-300,共10页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(71861025) 科技部国家重点研发计划资助项目(2018YFB1703105) 兰州理工大学红柳一流学科建设资助项目.
关键词 动态路径规划 有向D*算法 导向函数 路径平滑度函数 转弯因子 dynamic path planning directed D*algorithm steering function path smoothness function turning factor
  • 相关文献

参考文献4

二级参考文献95

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2高庆吉,于咏生,胡丹丹.基于改进A*算法的可行性路径搜索及优化[J].中国民航学院学报,2005,23(4):42-45. 被引量:15
  • 3刘义,张宇.基于改进人工势场法的移动机器人局部路径规划的研究[J].现代机械,2006(6):48-49. 被引量:18
  • 4Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 5Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 6Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 7Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 8De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 9Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 10Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.

共引文献506

同被引文献290

引证文献28

二级引证文献214

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部