期刊文献+

山岭隧道收敛变形无线感知及预测方法 被引量:3

Wireless sensing and prediction method for convergence deformation of mountain tunnels
下载PDF
导出
摘要 隧道施工过程中围岩的变形规律是施工安全的关键,目前钻爆法施工隧道断面的变形检测多基于全站仪展开,检测数据点数据量难以精细分析变形规律。借助无线传感网络(wirelesssensorsnetwork),可以实现隧道重点部位的长时间连续监测。在营盘山隧道布设了基于微机电系统(micro electro mechanical system)传感器的WSN监测设备,并构建了基于广域网(Web)的隧道施工安全风险动态管控系统平台,实现隧道关键位置变形的连续监测,所得变形时间序列,通过长短时记忆(long short-term memory)网络,更准确地预测隧道断面收敛变形值。实际工程应用结果证明了该方法的有效性。 Mastering the deformation laws of the surrounding rock during tunnelling is the key to the safety of construction.At present,the deformation detection of the tunnel section in the drilling and blasting method is mostly based on the total stations.Nevertheless,the amount of monitoring data applied in the detection was difficult to complete the fine analysis of convergence deformation.The wireless wensors network(WSN)is employed to realize the long-term continuous monitoring of key regions of the rock tunnel.Meanwhile,by setting up WSN monitoring equipment based on micro-electrical mechanical system sensors,a dynamic risk management and control system platform during tunnel construction based on Web is developed in Yingpanshan tunnel,Yunnan,China.Thus,the continuous monitoring of the deformation at the key region of the tunnel is realized.In addition,in accordance with the time series of deformation,the convergence deformation value of tunnel section is then predicted more accurately by the long short-term memory network.In summary,the performance of practical engineering application proveds the effectiveness of the proposed method.
作者 王天宁 王利宁 薛亚东 张越 张东明 黄宏伟 WANG Tian-ning;WANG Li-ning;XUE Ya-dong;ZHANG Yue;ZHANG Dong-ming;HUANG Hong-wei(College of Civil Engineering,Tongji University,Shanghai 200092,China;China Construction Communications Engineering Group Corp.Ltd.,Beijing 100142,China)
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2020年第S01期224-228,共5页 Chinese Journal of Geotechnical Engineering
关键词 山岭隧道 收敛变形 无线传感网络(WSN) 长短时记忆(LSTM)网络 mountain tunnel convergence deformation wireless sensor network long short-term memory network
  • 相关文献

参考文献5

二级参考文献41

共引文献202

同被引文献55

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部