期刊文献+

基于时间序列匹配的过山车定位法

Roller coaster localization based on time series alignment
下载PDF
导出
摘要 针对过山车难以精准定位的问题,本文提出了一种基于时间序列匹配的过山车定位方法。该方法首先使用动态时间规整(DTW)对惯性测量单元(IMU)的实测与仿真数据进行序列匹配,得到位置估计结果。之后将估计结果作为观测量,在误差状态卡尔曼滤波器(ESKF)中修正IMU预测结果,得到精准的定位结果。为了提高估计结果的准确度,本文提出了分段重组动态时间规整(SRDTW)算法,解决了DTW的匹配失真问题。使用本文方法对过山车进行了定位实验,结果表明,使用Z向加速度和俯仰角进行序列匹配可得到较为准确的估计结果;ESKF滤波后的平均定位误差可达0.24 m,较估计结果的定位误差减小45.6%。 To address the problem that roller coasters are difficult to locate,this article proposes a roller coaster localization method based on time series alignment.The method firstly uses the dynamic time warping(DTW)to align the inertial measurement unit(IMU)measured data with the simulated data to obtain the estimated position of roller coaster.Subsequently,the error state Kalman filter(ESKF)is used to update the IMU-based prediction by using the DTW estimation as observation.To improve the accuracy of the estimation,the segment recombination dynamic time warping(SRDTW)algorithm is proposed to solve the distortion problem of DTW.The localization experiments of a roller coaster are conducted using the method in this article.The results show that time series alignment using Z-directional acceleration and pitch angle can provide more accurate position estimation,and the average error after ESKF filtering can reach 0.24 m,which is 45.6%lower than average error of estimation alone.
作者 孙艺峰 王华杰 吕梦南 Sun Yifeng;Wang Huajie;Lyu Mengnan(China Special Equipment Inspection and Research Institute,Beijing 100029,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第2期257-265,共9页 Chinese Journal of Scientific Instrument
基金 中国特种设备检测研究院内部科研项目(2021青年19) 国家市场监督管理总局科技计划项目(2022MK207)资助
关键词 动态时间规整 时间序列 惯性测量单元 误差状态卡尔曼滤波 过山车定位 dynamic time warping time series inertial measurement unit error state Kalman filter roller coaster localization
  • 相关文献

参考文献6

二级参考文献57

  • 1G. Das, K. Lin, H. Mannila, et al.Rule discovery from time series. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 16--22.
  • 2A. Debregeas, G. Hebrail. Interactive interpretation of Kohonen maps applied to curves. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 179--183.
  • 3E. Keogh, M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering andrelevance feedback. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 239--241.
  • 4Z. M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22 (11) : 1266-- 1276.
  • 5S. Park, S. Kim, W. Chu. Segment-based approach for subsequence searches in sequence databases. The 16th ACM Symp on Applied Computing, Las Vegas, NV, 2001.
  • 6S. Kim, S. Park, W. Chu. An index-based approach for similarity search supporting time warping in large sequence databases. The 17th Int'l Conf. on Data Engineering,Heidelberg, Germany, 2001.
  • 7L. Rabiner, B. H. Juang. Fundamentals of Speech Recognition.Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 8H. J. L. M. Vullings, M. H. G. Verhaegen, H. B.Verbruggen. ECG segmentation using time warping. In: Proc. of 2nd Int'l Symposium on Advances in Intelligent Data Analysis,1997. 275--285.
  • 9D. J. Berndt, J. Clifford. Using dynamic time warping to find patterns in time series. Working Notes of the Knowledge Discovery in Databases Workshop, Seatle, WA, 1994.
  • 10D. M. Gavrila, L. Davis. Towards 3-d model-based tracking and recognition of human movement: A multi-view approach. IEEE Int'l Conf. on Automatic Face and Gesture Recognition, Zurich,Switzerland, 1995.

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部