期刊文献+

Comparative Study on Perimeter Intrusion Detection System of High-speed Railway 被引量:2

下载PDF
导出
摘要 The perimeter intrusion detection system is critical to China’s railway safety.An efficient intrusion detection system can effectively avoid human casualties and property damage.This article makes a comprehensive comparison of popular detection systems in recent years.It first outlines the characteristics and classification of intrusion detection systems,and then introducestherelevantliteratureofcontactandnon-contactsystemsaccordingtodifferenttypes,andalsointroducesthe principles and architecture of the models they use in detail.Finally,the detection performance and suitable environment under different system models are analyzed by comparison.
出处 《Instrumentation》 2020年第1期42-50,共9页 仪器仪表学报(英文版)
基金 in part supported by Science and Technology Research and Development Program of China National Railway Group Co.,Ltd.,under grant no.P2019T001
  • 相关文献

参考文献2

二级参考文献21

  • 1李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 2MAIR C,FARAROOY S. Practice and Potential of Com- puter Vision for Railways[C]//Proceedings of IEE Semi- nar Condition Monitoring for Rail Transport Systems. London, UK: IEE Press,1998:l-3.
  • 3OHTA M. Level Crossings Obstacle Detection System U-sing Stereo Cameras[J]. Quarterly Report of RTRI (Rail- way Technical Research Institute), 2005,46 (2) : 110-117.
  • 4SEHCHAN O, SUNGHUK P, CHANGMU L. Vision Based Platform Monitoring System for Railway Station Safety[C]//Proeeedings of 2007 7th International Confer- ence on ITS Telecommunications. New York: ITS Press, 2007: 172-176.
  • 5XUE J, CHENG J, WANG L, et al. Visual Monitoring- based Railway Grade Crossing Surveillance System[C] // Proceedings of 1st International Congress on Image and Sig- nal Processing(CISP 2008). New York: IEEE Press,2008 : 427-431.
  • 6JAIN A K, DUIN R P W, MAO J. Statistical Pattern Recognition: A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 7CHAPELLE O, HAFFNER P, VAPNIK V N. Support Vector Machines for Histogram-based Image Classification [J]. IEEE Transactions on Neural Networks, 1999, 10 (5) : 1055-1064.
  • 8HAICANG L, SHUTAO L. Decision Fusion of SparseRepresentation and Support Vector Machine for SAR Im- age Target Recognition[J]. Neurocomputing, 2013, 113 (1) :97-104.
  • 9WEN C C, DING M J. A Self-constructing Cascade Clas- sifier with Adaboost and SVM for Pedestrian Detection[J].Engineering Applications of Artificial Intelligence, 2013, 26(3) : 1016-1028.
  • 10MING K H. Visual Pattern Recognition by Moment In- variants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187.

共引文献47

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部