期刊文献+

基于nLD-SVM-RF的短文本分类研究 被引量:10

Classification of Short Texts Based on nLD-SVM-RF Model
原文传递
导出
摘要 【目的】解决短文本内容简短而引起的数据稀疏问题,提高短文本分类效果。【方法】针对短文本数据稀疏的特点,采用多通道文本建模方式,形成融合短文本语义、语序特征和主题特征的文本向量表示作为分类器的输入,采用集成SVM与随机森林的nLD-SVM-RF方法实现短文本分类。【结果】使用投诉短文本进行验证,相较于仅使用Doc2Vec作为特征的SVM单分类器和RF单分类器,当n=5时,nLD-SVM-RF方法准确率分别提高9.70%、6.25%。【局限】本文数据为电信投诉文本,数据量较小,没有在大样本数据集上进行验证。【结论】nLD-SVM-RF算法有助于企业分析短文本信息,辅助决策。 [Objective]This paper addresses the issue of data sparseness due to short texts,which also improves the performance of short texts classification.[Methods]We proposed a multi-channel text model for the input of short text classifier by integrating the semantics,word order features and topic features.Then,we created the classification method named nLD-SVM-RF with the help of SVM and random forest algorithms.Finally,we examined the new model with short text of complaints.[Results]We compared the performance of our new model with the SVM and RF single classifiers using Doc2 vec as the feature.When n=5,the accuracy of the nLD-SVMRF method increased by 9.70%and 6.25%,respectively.[Limitations]The experimental data size needs to be expanded.[Conclusions]The nLD-SVM-RF model provides a practical solution for the business community to analyse short texts and improve decision-making.
作者 余本功 曹雨蒙 陈杨楠 杨颖 Yu Bengong;Cao Yumeng;Chen Yangnan;Yang Ying(School of Management,Hefei University of Technology,Hefei 230009,China;Key Laboratory of Process Optimization&Intelligent Decision-making,Ministry of Education,Hefei University of Technology,Hefei 230009,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第1期111-120,共10页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金项目“基于制造大数据的产品研发知识集成与服务机制研究”(项目编号:71671057) 国家自然科学基金项目“不确定环境下的复杂产品研发协同绩效动态评价研究”(项目编号:71573071) 过程优化与智能决策教育部重点实验室开放课题的研究成果之一.
关键词 短文本分类 多通道建模 SVM 随机森林 集成学习 nLD-SVM-RF Short Text Classification Multi-Channel Modelling SVM Random Forest Ensemble Learning nLD-SVM-RF
  • 相关文献

参考文献19

二级参考文献223

共引文献338

同被引文献96

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部