期刊文献+

季节ARIMA模型与LSTM神经网络预测的比较 被引量:25

Comparison Between Seasonal ARIMA Model and LSTM Neural Network Forecast
下载PDF
导出
摘要 宏观经济预测一直是经济领域研究的热点和难点,随着深度学习技术的发展,长短期记忆(LSTM)神经网络已广泛应用于经济、金融等诸多领域。文章分别用传统的统计计量方法(ARIMA模型)和深度学习方法(LSTM神经网络)建模,预测中国2019年GDP季度数据。结果表明:(1)并非所有的LSTM建模预测都优于传统统计计量方法,应根据数据特点,选择适合的预测模型,通过对GDP的预测,ARIMA模型取得了更好的效果。(2)针对结构比较简单的时间序列数据,传统计量方法能得到较好的效果;针对结构复杂的非线性多变量数据,特别是非结构化数据,LSTM神经网络可以取得不错的效果。(3)根据GDP预测结果推算,2019年中国GDP增长率为6.49%,虽比上年下降0.11个百分点,但仍保持中高速平稳增长。 Macroeconomic forecast has always been a hotspot and difficulty in economic research,and with the advancement of deep learning,long short-term memory(LSTM)neural network is widely used in the fields of economy and finance.This paper uses traditional statistical method(ARIMA model)and deep learning method(LSTM neural network)respectively for modeling to forecast the quarterly GDP data of China in 2019.The results are shown as follows:1)Not all the LSTM modeling forecasts are superior to traditional statistical methods,and the suitable forecast model should be selected according to data characteristics;ARIMA model performs better through the GDP forecast.2)For time series data with relatively simple structure,traditional quantitative methods can achieve better performance,while LSTM neural network can achieve relatively good results for nonlinear multivariable data with complex structure,especially for unstructured data.3)According to the GDP forecast results,China’s GDP growth rate in 2019 is 6.49%,maintaining the steady medium-high speed growth,despite a projected decrease of 0.11%compared with last year.
作者 徐映梅 陈尧 Xu Yingmei;Chen Yao(School of Statistics and Mathematics,Zhongnan University of Economics and Law,Wuhan 430073,China;School of Mathematics and Statistics,Hubei Minzu University,Enshi Hubei 445000,China)
出处 《统计与决策》 CSSCI 北大核心 2021年第2期46-50,共5页 Statistics & Decision
基金 中南财经政法大学交叉学科创新研究项目(2722020JX001) 中南财经政法大学研究生创新项目(201811302)
关键词 ARIMA模型 LSTM GDP 增长率 ARIMA model LSTM GDP growth rate
  • 相关文献

参考文献1

二级参考文献5

共引文献26

同被引文献308

引证文献25

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部