摘要
目的基于决策树和人工神经网络方法,建立小儿肺炎痰热闭肺证诊断模型。方法以大样本、多中心小儿肺炎痰热闭肺证病例作为数据源,运用CRT、CHAID、QUEST、C5.0决策树和多层感知器(MLP)、径向基函数(RBF)的神经网络方法建立小儿肺炎痰热闭肺证诊断模型,并结合中医理论分析模型的诊断规则。结果采用CRT、CHAID、QUEST、C5.0算法决策树建立的小儿肺炎痰热闭肺证的诊断模型,准确率为83.1%、91.0%、89.5%、93.2%。其中采用C5.0算法的决策树模型优于前3种。采用MLP、RBF算法的神经网络方法建立小儿肺炎痰热闭肺证诊断模型,准确率为92.1%和90.8%,其中采用MLP的神经网络更优于采用RBF算法的神经网络。结论运用决策树和神经网络方法,可以建立小儿肺炎痰热闭肺证诊断模型。其中痰多粘稠、痰色黄、脉滑、咳嗽、指纹紫滞为诊断中的决定要素。"痰"、"热"为痰热闭肺证的证候病机。本研究为小儿肺炎临床辨证论治提供客观依据,有力促进中医标准化进程。
Objective To establish a diagnostic model for children with pneumonia of phlegm-heat obstructing the lung syndrome based on decision tree and artificial neural network.Methods Large-sample,multi-center children with pneumonia of phlegm-heat syndrome were used as data sources to establish a diagnosis model of pediatric pneumonia of phlegm-heat obstructing the lung syndrome by using CRT,CHAID,QUEST,C5.0 decision tree and multi-layer perceptron(MLP),radial basis function(RBF)nerves and analysing model combined with the diagnostic rules of TCM theory.Results The accuracy rate of diagnostic models of pediatric pneumonia with syndrome of phlegm-heat obstructing the lung established by CRT,CHAID,QUEST and C5.0 algorithm decision trees were 83.1%,91.0%,89.5%and 93.2%.The decision tree model with C5.0 algorithm is better than other three algorithms.The neural network with MLP and RBF algorithm was used to establish a diagnosis model of pediatric pneumonia of phlegm-heat obstructing the lung syndrome.The accuracy rate was 92.1%and 90.8%.The neural network of MLP was better than the neural network of RBF algorithm.Conclusion Using the decision tree and neural network method,a diagnosis model of pediatric pneumonia with syndrome of phlegm-heat obstructing the lung can be established.Among them,sputum thick,sputum yellow,pulse slippery,cough,and purple infantile venule of index finger are the determining factors in diagnosis.’Phlegm’and’Heat’are its syndromes and pathogenesis.This study provides an objective basis for clinical syndrome differentiation and treatment of pediatric pneumonia,and is beneficial to promote the standardization process of Chinese medicine.
作者
宫文浩
兰天莹
莫清莲
杨燕
戴启刚
陈莎莎
唐子西
刘悠江
艾军
Gong Wenhao;Lan Tianying;Mo Qinglian;Yang Yan;Dai Qigang;Chen Shasha;Tang Zixi;LiuYongjiang;Ai Jun(Faculty of Basic Medicine,Guangxi University of Chinese Medicine,Nanning,530020,China;Zhuang Medical College,Guangxi University of Chinese Medicine,Nanning,530020,China;Department of Traditional Chinese Medicine,Beijing Children's Hospital,Capital Medical University,Beijing,100045,China;Department of Pediatrics,Affiliated Hospital of Nanjing University of Chinese Medicine,Nanjing,210023,China;People's Hospital of Yongning District,Nanning City,Nanning,530200,China)
出处
《世界科学技术-中医药现代化》
CSCD
北大核心
2020年第7期2548-2555,共8页
Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology
基金
国家自然科学基金委员会地区科学基金项目(81660761):基于数据挖掘技术和Delphi法的小儿肺炎郁热辨证研究,负责人:艾军
广西自然科学基金委员会重点项目(2018GXNSFDA281008):基于临床循证和代谢组学的卫气营血辨证理论的证候基础研究,负责人:艾军
2018年广西一流学科建设项目重点课题(2018XK002):病毒性肺炎痰热闭肺证蛋白质组学研究,负责人:艾军
广西一流学科建设开放课题(2019XK002):甲型H1N1流感风热犯卫证、热毒袭肺证的蛋白质组学研究,负责人:艾军
关键词
小儿肺炎
决策树
人工神经网络
诊断模型
Pediatric Pneumonia
Decision tree
Artificial Neural Network
Diagnostic Model