期刊文献+

基于BERT-IDCNN-CRF的中文命名实体识别方法 被引量:54

BERT-IDCNN-CRF for named entity recognition in Chinese
原文传递
导出
摘要 预训练语言模型能够表达句子丰富的句法和语法信息,并且能够对词的多义性建模,在自然语言处理中有着广泛的应用,BERT(bidirectional encoder representations from transformers)预训练语言模型是其中之一。在基于BERT微调的命名实体识别方法中,存在的问题是训练参数过多,训练时间过长。针对这个问题提出了基于BERT-IDCNN-CRF(BERT-iterated dilated convolutional neural network-conditional random field)的中文命名实体识别方法,该方法通过BERT预训练语言模型得到字的上下文表示,再将字向量序列输入IDCNN-CRF模型中进行训练,训练过程中保持BERT参数不变,只训练IDCNN-CRF部分,在保持多义性的同时减少了训练参数。实验表明,该模型在MSRA语料上F1值能够达到94.41%,在中文命名实体任务上优于目前最好的Lattice-LSTM模型,提高了1.23%;与基于BERT微调的方法相比,该方法的F1值略低但是训练时间大幅度缩短。将该模型应用于信息安全、电网电磁环境舆情等领域的敏感实体识别,速度更快,响应更及时。 The pre-trained language model,BERT(bidirectional encoder representations from transformers),has shown promising result in NER(named entity recognition)due to its ability to represent rich syntactic,grammatical information in sentences and the polysemy of words.However,most existing BERT fine-tuning based models need to update lots of model parameters,facing with expensive time cost at both training and testing phases.To handle this problem,this work presents a novel BERT based language model for Chinese NER,named BERT-IDCNN-CRF(BERT-iterated dilated convolutional neural network-conditional random field).The proposed model utilizes traditional BERT model to obtain the context representation of the word as the input of IDCNN-CRF.At training phase,the model parameters of BERT in the proposed model remain unchanged so that the proposed model can reduce parameters training while maintaining polysemy of words.Experimental results show that the proposed model obtains significant training time with acceptable test error.
作者 李妮 关焕梅 杨飘 董文永 LI Ni;GUAN Huan-mei;YANG Piao;DONG Wen-yong(State Key Laboratory of Power Grid Environmental Protection,China Electric Power Research Institute,Wuhan 430074,Hubei,China;School of Computer Science,Wuhan University,Wuhan 430072,Hubei,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2020年第1期102-109,共8页 Journal of Shandong University(Natural Science)
基金 国家电网公司总部科技项目(GY71-18-009).
关键词 中文命名实体识别 BERT模型 膨胀卷积 条件随机场 信息安全 NER in Chinese BERT IDCNN CRF information security
  • 相关文献

参考文献1

二级参考文献18

  • 1Gina-Anne Levow, “The third international Chinese languageprocessing bakeoff: Word segmentation and named entity recog-nition”,Proc. of the Fifth SIGHAN Workshop on Chinese Lan-guage Processing, Sydney, Australia, pp.108-117, 2006.
  • 2H. Zhang, Q. Liu, H.K. Yu, Y.Q. Cheng and S. Bai, “Chi-nese named entity recognition using role model,,, Computa-tional Linguistics and Chinese Language Processing, Vol.8,No.2, pp.29-60,2003.
  • 3H. Zhang, Q. Liu, H.K. Yu, Y.Q. Cheng and S. Bai, “Chi-nese named entity recognition using role model,,, Computa-tional Linguistics and Chinese Language Processing, Vol.8,No.2, pp.29-60,2003.
  • 4W. Chen, Yujie Zhang and Hitoshi Isahara, “Chinese namedentity recognition with conditional random fields”,Proc. of 5thSIGHAN Workshop on Chinese Language Processing, Sydney,Australia, pp.118-121, 2006.
  • 5J. Zhou, L. He, X. Dai and J. Chen, “Chinese named entityrecognition with a multiphase model”,Proc. of 5th SIGHANWorkshop on Chinese Language Processing, Sydney, Australia,pp.213-216, 2006.
  • 6A. Chen, F. Peng, R. Shan and G. Sun, “Chinese named entityrecognition with conditional probabilistic models", Proc. of 5thSIGHAN Workshop on Chinese Language Processing, Sydney,Australia, pp.173-176, 2006.
  • 7J. Lafferty, A. McCallum and F. Pereira, “Conditional ran-dom fields: Probabilistic models for segmenting and labelingsequence data”, Proc. of ICML, San Francisco, USA, pp.282-289, 2001.
  • 8Yue Zhang and Stephen Clark, “Joint word segmentation andPOS tagging using a single perceptron”,Proc. of ACL/HLT,Columbus, OH, pp.888-896, 2008.
  • 9Yue Zhang and Stephen Clark, “A fast decoder for joint wordsegmentation and POS-tagging using a single discriminativemodel”,Proc. of EM NLP, Cambridge, MA, pp.843-852, 2010.
  • 10W. Jiang, Haitao Mi and Qun Liu, “Word lattice reranking forChinese word segmentation and part-of-speech tagging,,,Proc.of COLING, Manchester, UK, pp.385-392, 2008.

共引文献20

同被引文献381

引证文献54

二级引证文献334

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部