期刊文献+

基于Rao-Stirling指数和LDA模型的领域学科交叉主题识别——以纳米科技为例 被引量:19

Interdisciplinary Literature Discovery Based on Rao-Stirling Diversity Indices: Case Studies in Nanoscience and Nanotechnology
原文传递
导出
摘要 【目的/意义】基于Rao-Stirling指数和LDA模型进行领域学科交叉主题识别,并以纳米科技为例验证将Rao-Stirling指数和LDA模型用于领域学科交叉主题识别的有效性和适用性。【方法/过程】基于Rao-Stirling指数测度领域文献学科交叉程度,设定阈值发现高度学科交叉文献。基于LDA模型对筛选出的学科交叉文献进行主题识别,发现学科交叉点和学科交叉研究主题。【结果/结论】基于Rao-Stirling指数从引文的角度进行领域文献学科交叉测度可以有效地发现与某领域相关的学科交叉文献,且有利于大数据集的学科交叉文献发现研究的实现。基于LDA模型进行学科交叉主题识别可以有效地发现学科交叉主题。两方法的组合应用为发现某领域学科交叉主题研究提供一种新视角。 【Purpose/significance】This paper aims to identify interdisciplinary topic based on Rao-Stirling diversity indices and LDA(Latent dirichlet allocation)model,the field of nanoscience and nanotechnology was taken as the example to verify the method’s efficiency and applicability【Method/process】Measuring the interdisciplinary extent of domain publications based on Rao-Stirling diversity indices to find domain-related interdisciplinary publications by setting up a threshold.Mining the topic of domain-related interdisciplinary publications based on LDA model to discover domain intersections.【Result/conclusion】The citation analysis of interdisciplinary degree of literature based on the Rao-Stirling Index can effectively find interdisciplinary literature related to a certain field,and the algorithm is of low complexity,which is beneficial to the discovery of interdisciplinary literature of large data sets.The interdisciplinary topic identification based on LDA model can effectively discover interdisciplinary themes of a certain domain.The combination of two methods provides a new perspective for domain interdisciplinary topic identification study.
作者 韩正琪 刘小平 寇晶晶 HAN Zheng-qi;LIU Xiao-ping;KOU Jing-jing(China University of Political Science and Law Library,Beijing 100088,China;The CUPL Scientometrics and Evaluation Center of Rule of Law,Beijing 100088,China;National Science Library,Chinese Academy of Sciences,Beijing Beijing 100190,China;Information and Archives Management,School of Economics and Management,University of Chinese Academy of Sciences,Beijing 100049,China;University of International Relations,Beijing 100091,China)
出处 《情报科学》 CSSCI 北大核心 2020年第2期116-124,共9页 Information Science
基金 中国科学院文献情报能力建设专项“科技领域战略情报研究与决策咨询体系建设”子课题“基础交叉前沿领域战略情报研究与决策咨询”(Y8C0381005-01) 中央高校基本科研业务费专项基金资助项目“现代信息技术驱动的大学图书馆管理与服务创新”(1000-10819320).
关键词 学科交叉 主题识别 Rao-Stirling指数 LDA模型 纳米科技 interdisciplinarity topic identification Rao-Stirling diversity indices LDA(Latent Dirichlet Allocation)model nanoscience and nanotechnology
  • 相关文献

参考文献6

二级参考文献55

共引文献73

同被引文献278

引证文献19

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部