期刊文献+

基于改进YOLO v8-Pose的红熟期草莓识别和果柄检测 被引量:8

Red Ripe Strawberry Recognition and Stem Detection Based on Improved YOLO v8-Pose
下载PDF
导出
摘要 针对高架栽培模式下的大棚草莓,借鉴人体姿态检测算法,建立了改进YOLO v8-Pose模型对红熟期草莓进行识别与果柄关键点检测。通过对比YOLO v5-Pose、YOLO v7-Pose、YOLO v8-Pose模型,确定使用YOLO v8-Pose模型作为对红熟期草莓识别与关键点预测的模型。以YOLO v8-Pose为基础,对其网络结构添加Slim-neck模块与CBAM注意力机制模块,提高模型对小目标物体的特征提取能力,以适应草莓数据集的特点。改进YOLO v8-Pose能够有效检测红熟期草莓并准确标记出果柄关键点,P、R、mAP-kp分别为98.14%、94.54%、97.91%,比YOLO v8-Pose分别提高5.41、5.31、8.29个百分点。模型内存占用量为22 MB,比YOLO v8-Pose的占用量小6 MB。此外,针对果园非结构化的特征,探究了光线、遮挡与拍摄角度对模型预测的影响。对比改进前后的模型在复杂环境下对红熟期草莓的识别与果柄预测情况,改进YOLO v8-Pose在受遮挡、光线和角度影响情况下的mAPkp分别为94.52%、95.48%、94.63%,较YOLO v8-Pose分别提高8.9、10.75、5.17个百分点。改进YOLO v8-Pose可在保证网络模型精度的同时对遮挡、光线和拍摄角度等影响均具有较好的鲁棒性,能够实现对复杂环境下红熟期草莓识别与果柄关键点预测。 The improved YOLO v8-Pose model was established to identify red ripe strawberries and detect the key points of the stem in greenhouse strawberries under elevated cultivation mode.By comparing the YOLO v5-Pose,YOLO v7-Pose and YOLO v8-Pose models,the YOLO v8-Pose model was determined to be used as the model to identify and predict the key points of red ripe strawberries.Based on YOLO v8-Pose,Slim-neck module and CBAM attention mechanism module were added to its network structure to improve the feature extraction ability of the model for small target objects,so as to adapt to the characteristics of strawberry data set.The P,R and mAP-kp of the improved YOLO v8-Pose were 98.14%,94.54%and 97.91%,respectively,which can effectively detect red ripe strawberries and accurately mark the key points of the fruit stalk,which was 5.41,5.31 and 8.29 percentage points higher than that of YOLO v8-Pose.The model memory footprint was 22 MB,which was 6 MB less than that of the YOLO v8-Pose footprint.In addition,according to the unstructured characteristics of the orchard,the influence of light,occlusion and shooting angle on the model prediction was explored.Compared with the recognition and stem prediction of the improved YOLO v8-Pose model in the complex environment,the mAP-kp of the improved YOLO v8-Pose under the influence of occlusion,light and angle was 94.52%,95.48%and 94.63%,respectively.Compared with YOLO v8-Pose,it was 8.9,10.75 and 5.17 percentage points higher,respectively.The improved YOLO v8-Pose can ensure the accuracy of the network model,and at the same time,it had good robustness to the effects of occlusion,light and shooting angle,etc.,which can realize the identification of red ripe strawberries in complex environments and the prediction of key points of fruit stalk.
作者 刘莫尘 褚镇源 崔明诗 杨庆璐 王金星 杨化伟 LIU Mochen;CHU Zhenyuan;CUI Mingshi;YANG Qinglu;WANG Jinxing;YANG Huawei(College of Mechanical and Electronic Engineering,Shandong Agricultural University,Taian 271018,China;Shandong Engineering Laboratory of Agricultural Equipment Intelligence,Taian 271018,China;Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment,Taian 271018,China;Shandong Academy of Agricultural Machinery Sciences,Ji’nan 250010,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S02期244-251,共8页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(32001419) 山东省重点研发计划(重大科技创新工程)项目(2022CXGC020701)
关键词 红熟期草莓识别 关键点预测 YOLO v8-Pose 注意力机制 red ripe strawberry recognition key point prediction YOLO v8-Pose attention mechanism
  • 相关文献

参考文献17

二级参考文献167

共引文献339

同被引文献97

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部