期刊文献+

基于SSA-PSO-LSTM模型的羊舍相对湿度预测技术 被引量:8

Prediction of Sheep House Humidity Based on SSA PSO LSTM Model
下载PDF
导出
摘要 羊舍湿度过高或过低都会直接威胁肉羊健康生长,及时掌握湿度变化趋势并提前调控是确保规模化肉羊无应激环境下健康养殖的关键。为提高湿度预测精度,提出了基于奇异谱分析(SSA)、粒子群优化算法(PSO)、长短时记忆网络(LSTM)的羊舍湿度非线性组合预测模型。利用SSA分离出正常序列和噪声序列,将原始序列转换为平滑序列;其次通过PSO不断迭代优化确定LSTM的最优参数组合,降低LSTM的训练成本;最终依据优化参数建立组合预测模型分别对两序列进行预测,模型结果之和为最终预测结果。利用该模型对新疆维吾尔自治区2021年3月17—27日期间的羊舍空气相对湿度进行预测,结果表明,该组合预测模型具有良好的泛化性、稳定性和收敛性。与标准的ELM、SVR、LSTM、PSO-LSTM、EMD-PSO-LSTM等模型相比,本文提出的SSA-PSO-LSTM组合模型具有更高的预测精度,其均方误差、平均绝对误差和决定系数分别为1.127%^(2)、0.803%和0.988。 Sheep house humidity has the characteristics of large time delay,nonlinearity and spatial distribution difference,and the interaction mechanism with a variety of environmental parameters is complex and highly coupled.The humidity prediction model constructed by traditional prediction methods is difficult to meet the needs of large-scale accurate breeding of mutton sheep.Too high or too low humidity of sheep house will directly threaten the healthy growth of sheep.Timely control of the trend of humidity and early regulation is the key to ensure the welfare of sheep.A nonlinear combined prediction model of sheep house humidity based on singular spectrum analysis(SSA),particle swarm optimization(PSO)and optimized long short-term memory network(LSTM)was proposed for accuracy humidity prediction.Firstly,the normal sequence and noise sequence were separated by SSA,and the original sequence was transformed into smooth sequence.Secondly,the optimal parameter combination of LSTM was determined through PSO iterative optimization to reduce the training cost of LSTM.Finally,a combined prediction model was established according to the optimized parameters to predict the two sequences respectively,and the sum of the model results was the final prediction result.The model was used to predict the air humidity in sheep houses in Xinjiang Uygur Autonomous Region from March 17,2021 to March 27,2021.The results showed that the combined prediction model had good generalization,stability and convergence.Compared with the standard ELM,SVR,LSTM,PSO-LSTM,EMD-PSO-LSTM and other models,the proposed SSA-PS-LSTM combined model had higher prediction accuracy.Its mean square error(MSE),mean absolute error(MAE)and determination coefficient(R^(2))were 1.127%^(2),0.803%and 0.988,respectively.The experimental results showed that the established model had better prediction performance,which can provide important decisions for formulating optimized sheep house environmental control strategy,solving the lag problem of environmental control effect,and it made a strong support for the healthy growth of sheep.
作者 郭建军 韩钤钰 董佳琦 周冰 徐龙琴 刘双印 GUO Jianjun;HAN Qianyu;DONG Jiaqi;ZHOU Bing;XU Longqin;LIU Shuangyin(Guangzhou Key Laboratory of Agricultural Products Quality and Safety Traceability Information Technology,Zhongkai University of Agriculture and Engineering,Guangzhou 510225,China;College of Information Science and Technology,Zhongkai University of Agriculture and Engineering,Guangzhou 510225,China;School of Digital Media,Shenzhen Institute of Information Technology,Shenzhen 518172,China;Academy of Intelligent Agricultural Engineering Innovations,Zhongkai University of Agriculture and Engineering,Guangzhou 510225,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2022年第9期365-373,398,共10页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(61871475) 广州市创新平台建设计划实验室建设专项(201905010006) 广州市重点研发计划项目(201903010043、202103000033) 广东省农业技术研发项目(2018LM2168) 广东省科技计划项目(2020A141405060、2016A020210122、2020B0202080002、2021B42121631) 广州市增城区农村科技特派员项目(2021B42121631)
关键词 羊舍 湿度预测 奇异谱分析 粒子群优化 长短时记忆网络 sheep house humidity prediction singular spectrum analysis particle swarm optimization long short-term memory network
  • 相关文献

参考文献25

二级参考文献236

共引文献277

同被引文献135

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部