期刊文献+

基于深度学习的无人机遥感小麦倒伏面积提取方法 被引量:13

Extraction of Lodging Area of Wheat Varieties by Unmanned Aerial Vehicle Remote Sensing Based on Deep Learning
下载PDF
导出
摘要 为及时准确地提取小麦倒伏面积,提出一种融合多尺度特征的倒伏面积分割模型Attention_U^(2)-Net。该模型以U^(2)-Net为架构,利用非局部注意力(Non-local attention)机制替换步长较大的空洞卷积,扩大高层网络感受野,提高不同尺寸地物识别准确率;使用通道注意力机制改进级联方式提升模型精度;构建多层级联合加权损失函数,用于解决均衡难易度和正负样本不均衡问题。Attention_U^(2)-Net在自建数据集上采用裁剪方式提取小麦倒伏面积,查准率为86.53%,召回率为89.42%,F1值为87.95%。与FastFCN、U-Net、U^(2)-Net、FCN、SegNet、DeepLabv3等模型相比,Attention_U^(2)-Net具有最高的F1值。通过与标注面积对比,Attention_U^(2)-Net使用裁剪方式提取面积与标注面积最为接近,倒伏面积准确率可达97.25%,且误检面积最小。实验结果表明,Attention_U^(2)-Net对小麦倒伏面积提取具有较强的鲁棒性和准确率,可为无人机遥感小麦受灾面积及评估损失提供参考。 In order to extract the lodging area timely and accurately,a lodging area extraction model,namely Attention_U^(2)-Net,was proposed.By integrating multi-scale features and based on U^(2)-Net,Attention_U^(2)-Net employed non-local attention mechanism to replace the hole convolution with large step size,expanded the receptive field of high-level network and improved the recognition accuracy of ground objects with different sizes,and utilized channel attention mechanism to improve the cascade mode and enhanced the accuracy.A multi-level joint weighted loss function was designed to balance the difficult and easy samples,and solve the challenge of imbalance between positive and negative samples.Patch-based pipelines were utilized to extract the lodging area.Experimental results on the self-built dataset showed effectiveness of Attention_U^(2)-Net.The precision rate was 86.53%,the recall rate was 89.42%,and the F1 value was 87.95%,respectively.Compared with FastFCN,U-Net,U^(2)-Net,FCN,SegNet and DeepLabv3,Attention_U^(2)-Net achieved the highest F1 value and showed strong robustness and extraction accuracy.Compared with the labeled area,the extracted area obtained by Attention_U^(2)-Net via cropping method was the closest one,and the accuracy rate of lodging area can reach 97.25%.Meanwhile,the false detection area of Attention_U^(2)-Net was the smallest among all models.Experimental results showed that Attention_U^(2)-Net had strong robustness and high segmentation accuracy,which can be utilized as a valuable reference for UAV remote sensing of wheat affected area and loss assessment.
作者 申华磊 苏歆琪 赵巧丽 周萌 刘栋 臧贺藏 SHEN Hualei;SU Xinqi;ZHAO Qiaoli;ZHOU Meng;LIU Dong;ZANG Hecang(College of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,China;Institute of Agricultural Economy and Information,Henan Academy of Agricultural Sciences,Zhengzhou 450002,China;Huanghuaihai Key Laboratory of Intelligent Agricultural Technology,Ministry of Agriculture and Rural Affairs,Zhengzhou 450002,China;Henan Key Laboratory of Educational Artificial Intelligence and Personalized Learning,Xinxiang 453007,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2022年第9期252-260,341,共10页 Transactions of the Chinese Society for Agricultural Machinery
基金 河南省科技攻关计划项目(212102110253、222102110244) 国家自然科学基金项目(62072160) 河南省农业科学院农业经济与信息研究所科技创新领军人才培育项目(2022KJCX02) 河南省农业科学院科技创新团队项目(2022TD14)
关键词 小麦 无人机遥感 倒伏面积提取 深度学习 U~2-Net wheat unmanned aerial vehicle remote sensing lodging area extraction deep learning U~2-Net
  • 相关文献

参考文献9

二级参考文献141

共引文献575

同被引文献193

引证文献13

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部