摘要
为了在生产实践中对工作面刮板机的工作状态进行实时监测,避免因链条偏移、磨损、断链而造成的损失,提高开采过程的智能化与自动化水平,提出了一种基于语义分割和边缘检测等图像处理技术与磁探伤传感器技术的工作面刮板机在线监测系统。结果表明:在满足识别条件的前提下,该系统对刮板机链条的识别率能够达到90%,识别延迟小于2 s,能够对刮板机的链条拉伸、磨损或变形超过5%时有较高的检测准确度,并且在地面调度指挥中心能够实时接收刮板输送机断链拉斜视频、图片以及地面监控系统语音报警信息。
In order to monitor the working state of the face scraper in real time in production practice,avoid the loss caused by chain deviation,wear and breakage,and improve the intelligence and automation level of the mining process,this paper proposes an online monitoring system for the face scraper based on image processing technologies such as semantic segmentation and edge detection and magnetic flaw detection sensor technology.The results show that,on the premise of meeting the recognition conditions,the recognition rate of the scraper chain can reach 90%,the recognition delay is less than 2 seconds,and the system can have high detection accuracy when the chain of the scraper is stretched,worn or deformed more than 5%.In addition,the ground dispatching command center can receive the video,pictures and voice alarm information of the ground monitoring system of the broken chain and inclined chain of the scraper conveyor in real time.
作者
许联航
高捷
叶壮
赖岳华
XU Lianhang;GAO Jie;YE Zhuang;LAI Yuehua(Shenhua Shendong Coal Group Co.,Ltd.,Ordos 017209,China;China University of Mining and Technology,School of Information and Control Engineering,Xuzhou 221116;Beijing Tianma Intelligent Control Technology Co.,Ltd.,Beijing 101399,China)
出处
《煤炭科学技术》
EI
CAS
CSCD
北大核心
2023年第S01期390-395,共6页
Coal Science and Technology
基金
神东保德“综采放顶煤智能化控制技术研究”项目(00000050048)
关键词
图像处理
磁探伤
工作面刮板机
在线监测
语义分割
image processing
magnetic flaw detection
working face scraper
online monitoring
semantic segmentation