期刊文献+

基于缺失数据的误差生成策略及其在故障检测中的应用 被引量:5

Missing data based method for residual generation and its application for fault detection
原文传递
导出
摘要 误差生成是基于机理模型故障检测方法的核心本质,但鲜有应用于统计过程监测方法中.为此,提出一种基于缺失数据的误差生成策略,将能反映出采样数据对统计模型拟合程度的误差作为新的被监测对象实施故障检测.所提出的基于缺失数据的主元分析(MD-PCA)方法通过逐一假设各变量测量数据缺失后,利用缺失数据处理方法推测出相应缺失数据的估计值,并对缺失数据的实际值与估计值之间的误差实施基于PCA模型的故障检测.利用误差实施故障检测的优势在于,生成的误差能在一定程度上降低原测量变量的非高斯性程度,而且误差体现的是对应缺失变量中与其他测量变量不相关的成分信息,更能揭示各测量变量的本质.通过在TE过程上的实验充分验证了所提出方法的优势,以及MD-PCA方法用于故障检测的可行性与优越性. Residual generation is the essental step in the model-based fault detection methods,but it has not been applied in the statistical process monitoring approaches.Therefore,a missing data based residual generation strategy is proposed,the generated residual which can indicate the fittness of sampled data to the developed statistical model is utilzied for fault detection.The proposed missing data based principal component analsyis(MD-PCA)method first assumes the measured data of individual variables is missing one by one,and the technique handling missing data is then employed for calculating the estimation of the corresponding missig variable.Ultimately,the resdiual between the actual and estimated data is modeled and monitored using the PCA-based fault detection approach.The advantages of utilizing residual for fault detection lie in that the generated residual can reduce the non-Gaussianity of the origianl measured variable to some extent,and that the residual reflects the uncorrelated information from other measured variables in the corresponding missing variable,and more essential characteristic of indicidual variables can be recovered.The case study in the TE process sufficiently demonstrates these advantages of the proposed method,and the feasibility and superiority of the MD-PCA method are validated as well.
作者 蓝艇 朱莹 俞海珍 童楚东 LAN Ting;ZHU Ying;YU Hai-zhen;TONG Chu-dong(Faculty of Electrical Engineering&Computer Science,Ningbo University,Ningbo 315211,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第2期396-402,共7页 Control and Decision
基金 国家自然科学基金项目(61503204,61773225) 浙江省自然科学基金项目(LY16F030001).
关键词 缺失数据 主成分分析 统计过程监测 误差生成 故障检测 TE过程 missing data principal component analysis statistical process monitoring residual generation fault detection TE process
  • 相关文献

参考文献9

二级参考文献133

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 2赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 3Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12- 24.
  • 4Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2): 161- 174.
  • 5Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring[J]. J of Chemometrics, 2001, 15(9): 715-742.
  • 6Qin S J, Cherry G, Good R, et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework[J]. J of Process Control, 2006, 16(3): 179-191.
  • 7Zhang Y, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations[J]. J of Process Control, 2006, 16(8): 819-829.
  • 8Undey C, Tatara E, Cinar A. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods[J]. Engineering Applications of Artificial Intelligence, 2003, 16(5/6): 555- 566.
  • 9Desborough L, Harris T. Performance assessment measures for univariate feedback control[J]. J of Chemical Engineering, 1992, 70(6): 262-268.
  • 10Kesavan P, Lee J H. Diagnostic tools for multivariable model-based control systems[J]. Industial Engineering Chemistry Research, 1993, 36(7): 2725-2738.

共引文献171

同被引文献51

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部