期刊文献+

微电子生产过程调度问题基于指标快速预报的分解算法 被引量:2

An indexes fast prediction based decomposition method for scheduling problem in microelectronic production process
原文传递
导出
摘要 微电子生产过程调度问题具有规模大和约束复杂等特点,如菜单、Setup时间和组批约束等,其优化调度具有一定难度.针对以最小化平均流经时间为调度目标的较大规模微电子生产过程调度问题,提出一种基于指标快速预报的分解方法(DM-IFP).首先,通过松弛不可中断约束,设计一种代理方法,即基于机器负载的操作完工时间快速预测方法(CTP-ML);其次,设计基于CTP-ML的问题分解方法,将原问题迭代分解为多个连续交迭的子问题;然后,提出一种基于双信息素的蚁群算法(ACO-D)用于求解分解后的子问题,其全局调度目标采用CTP-ML获取,有效保证了全局优化性能;最后,针对一些不同规模的仿真数据,将所提出方法与一些代表性的算法进行详尽的数值对比,计算结果表明所提出方法在所获解的质量和收敛性上均有改善. The scheduling problem in the microelectronic production process has some characteristics including large scale and complex constraints,such as recipe constraint,Setup time,batch capacity and so on.It is difficult to obtain the optimal solution.For the problem with the objective of minimizing the mean cycle time,this paper proposes an indexes fast prediction based decomposition method(DM-IFP).Firstly,after relaxing the non-preemptive constraint,a surrogate method,i.e.,the fast prediction method of operation completion time based on the machine load(CTP-ML),is proposed.Then,a CTP-ML based problem decomposition method is designed to decompose the original problems into several consecutive and overlapped subproblems.A double pheromones based ant colony optimization(ACO)algorithm is proposed to solve the subproblem,in which the CTP-ML is applied to obtain the global scheduling objective of each subpropblem so that the original scheduling problem is optimized.Finally,based on some simulated data with different scale,sufficient computational comparisons are provided between the proposed DM-IFP and some representative algorithms.It is shown that the proposed method generates better results in terms of quality and convergence.
作者 张龙 许川佩 刘民 董明宇 ZHANG Long;XU Chuan-pei;LIU Min;DONG Ming-yu(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Key Laboratory of Automatic Detection Technology and Instrument,Guilin 541004,China;Department of Automation,Tsinghua University,Beijing 100084,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第1期139-146,共8页 Control and Decision
基金 国家自然科学基金项目(61561012,61741403) 国家科技重大专项课题(2011ZX02504-008) 广西高校中青年教师基础能力提升项目(ky2016YB152) 广西自动检测技术与仪器重点实验室主任基金项目(YQ16109).
关键词 微电子生产过程 调度 蚁群算法 分解 预测 microelectronic production process scheduling ant colony optimization decomposition Prediction
  • 相关文献

参考文献5

二级参考文献26

共引文献22

同被引文献15

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部