期刊文献+

基于关键帧的视觉惯性定位算法 被引量:2

Keyframe-based Visual-inertial Localization Algorithm
下载PDF
导出
摘要 针对视觉里程计定位精度易受环境因素干扰而降低的问题,本文采用视觉惯性定位方法。首先,利用惯性测量单元(IMU)在短时间内提供精确测量信息的特点,将视觉信息与IMU数据进行紧耦合处理,提高系统的定位精度。其次,为提高系统的实时性,将图像帧进行关键帧筛选,并提出一种关键帧选择方法。然后,采用滑动窗口融合优化模型,求解位姿估计得到相机的运动轨迹。最后,通过EuRo C数据集对本系统进行实验,评价了本文算法定位精度与时间效率,实验结果表明,与主流算法OKVIS相比本文算法在定位精度与实时性上均有所提高。 Aiming at the problem that the localization accuracy of visual odometery is easily affected by environmental factors,this paper adopts the method of visual-inertial localization.Firstly,the inertial measurement unit(IMU)is used to provide accurate measurement information in a short time,and the visual information are tightly coupled with the IMU data to improve the localization accuracy of the system.Secondly,in order to improve the real-time performance of the system,keyframe selection is performed on image frames,and a keyframe selection method is proposed.Then,a sliding window fusion optimizer is used to obtain the motion trajectory of the camera.Finally,the system is tested by EuRoC dataset,and the positioning accuracy and time efficiency of the proposed algorithm are evaluated.The experimental results show that compared with the mainstream algorithm OKVIS,the proposed algorithm improves the localization accuracy and real-time performance.
作者 徐玲 蔡慧 郑恩辉 花江峰 刘政 王谈谈 Xu Ling;Cai Hui;Zheng Enhui;Hua Jiangfeng;Liu Zheng;Wang Tantan(College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China;Hangzhou Gudewei Technology Company Limited,Hangzhou 310018,China)
出处 《科技通报》 2020年第5期77-81,共5页 Bulletin of Science and Technology
基金 国家自然基金资助项目(60905034) 浙江省公益技术研究计划/工业项目(LGG18E070004)
关键词 视觉里程计 关键帧 IMU 滑动窗口优化 visual odometry keyframe IMU sliding window optimizer
  • 相关文献

参考文献2

二级参考文献17

  • 1BAIRD W H. An introduction to inertial navigation [J]. American Journal of Physics, 2009,77 (844).
  • 2KONOLIGE K, AGRAWAL M, SOL J. Large-Scale Visual Odometry for Rough TerrainRobotics Research [M]. KANEKO M, NAKAMURA Y. Heidelberg, Berlin, Springer,2011 : 201-212.
  • 3BONIN-FONT F, ORTIZ A, OLIVER G. Visual navigation for mobile robots : A survey [J]. Journal of Intelligent & Robotic Systems ,2008,53 ( 3 ) : 263-296.
  • 4STRASDAT H, MONTIEL J M M, DAVISON A J. Visual SLAM: Why filter [ J ]. Image and Vision Computing, 2012,30(2) : 65-77.
  • 5NEWMAN P, CHANDRAN-RAMESH M, COLE D, et al. Describing, navigating and recognising urban spaces-building an end-to-end SLAM system robotics research [M]. KANEKO M, NAKAMURA Y. Heidelberg, Berlin, Springer, 2011: 237-253.
  • 6WILLIAMS B,CUMMINS M, NEIRA J, et al. A comparison of loop closing techniques in monocular SLAM [ J ]. Robotics and Autonomous Systems, 2009, 57 ( 12 ) : 1188-1197.
  • 7KUMAR S, PRAKASH J, KANAGASABAPATHY P. A critical evaluation and experimental verification of extended kalman filter, unscented kalman filter and Neural State Filter for state estimation of three phase induction motor [ J ]. Applied Soft Computing, 2011, 11 ( 3 ) : 3199 -3208.
  • 8RYU J B, LEE C G, PARK H H. Formula for Harris corner detector [ J ]. Electronics Letters, 2011, 47 ( 3 ) : 180-181.
  • 9KELLY J, SARIPALLI S, SUKHATME G. Combined visual and inertial navigation for an unmanned aerial vehicle field and service robotics [M]. LAUGIER C, SIEGWART R. Heidelberg, Berlin, Springer, 2008 : 255-264.
  • 10LUKASHEVICH P, ZALESKY B, ABLAMEYKO S. Medical image registration based on SURF detector [ J ]. Pattern Recognition and Image Analysis, 2011,21 ( 3 ) : 519-521.

共引文献77

同被引文献33

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部