期刊文献+

宠物知识图谱的半自动化构建方法 被引量:8

Semi-automated construction method of pet knowledge graph
下载PDF
导出
摘要 提出一种宠物知识图谱的构建框架。通过自顶向下的方式设计并构建了schema(概念)层,从半结构化和非结构化数据中进行知识抽取构建了数据层。在对非结构化数据的实体抽取方面,提出了一种条件随机场(CRF)与宠物症状词典相结合的症状命名实体识别方法。该方法利用症状词典对文本进行识别,获取语义类别信息,CRF结合语义信息实现对症状实体的识别抽取。实验结果表明了该方法的有效性。在知识表示方面,选用Orient DB数据库支持的属性图模型来表示。知识图谱采用Orient DB图数据库来完成知识的存储,并实例展示了构建的宠物知识图谱。 This paper proposed a construction framework of pet knowledge graph.It designed and constructed the schema layer in a top-down manner and constructed the data layer by extracting knowledge from semi-structured and unstructured data.For entity extraction of unstructured data,this paper proposed a symptom-named entity recognition method which combined conditional random field(CRF)and pet symptom dictionary.The method used symptom dictionary to identify the text and obtained the semantic category information,and then combined CRF and the semantic information to identify symptom-named entities.The experimental results show the effectiveness of the method.It selected the attribute graph model supported by the OrientDB database for knowledge representation.The knowledge graph used the OrientDB graph database for knowledge storage.In addition,it showed the constructed pet knowledge graph.
作者 袁琦 刘渊 谢振平 陆菁 Yuan Qi;Liu Yuan;Xie Zhenping;Lu Jing(School of Digital Media,Jiangnan University,Wuxi Jiangsu 214122,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第1期178-182,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61672264) 国家科技支撑计划资助项目(2015BAH54F01) 江苏省研究生科研与实践创新计划项目(SJCX17_0505).
关键词 宠物知识图谱 症状术语词典 宠物症状命名实体识别 条件随机场 图数据库 pet knowledge graph symptoms dictionary pet symptom named entity recognition conditional random field(CRF) graph database
  • 相关文献

参考文献4

二级参考文献45

  • 1常育红,姜哲,朱小燕.基于标记树表示方法的页面结构分析[J].计算机工程与应用,2004,40(16):129-132. 被引量:24
  • 2Miller G A. WordNet: a lexieal database for English. Communications of the ACM, 1995, 38(11): 39-41.
  • 3Hassanzadeh O, Consens M. Linked movie data base // Proceedings of the 2nd Workshop on Linked Data on the Web (LDOW2009). Madrid, 2009:1-5.
  • 4Lehmann J, Robert 1, Max J, et al. Dbpedia-a large- scale, multilingual knowledge base extracted from Wikipedia. Semantic Web Journal, 2014, 5:1-29.
  • 5Suchanek, Fabian M, Serge A, et al. Paris: probabilistic alignment of relations, instances, and schema. Proceedings of the VLDB Endowment, 2011, 5(3): 157-168.
  • 6Lacoste J S, Palla K, Davies A, et al. Sigma: simple greedy matching for aligning large knowledge bases// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, 2013:572 -580.
  • 7Li Juanzi, Jie Tang, Yi Li, et al. Rimom: a dynamic multistrategy ontology alignment framework. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(8): 1218-1232.
  • 8Melnik S, Hector G M, Erhard R. Similarity flooding: a versatile graph matching algorithm and its application to schema matching//Proceedings of 18th International Conference on Data Engineering. San Jose, 2002:117-128.
  • 9Wang Zhichun, Li Juanzi, Wang Zhigang, et al. Cross- lingual knowledge linking across wiki knowledge bases // Proceeding of the 21st International Confe- rence on World Wide Web. New York, 2012:459-468.
  • 10Xu Mengling, Wang Zhichun, Bie Rongfang, et al. Discovering missing semantic relations between entities in Wikipedia // The Semantic Web-ISWC 2013. Berlin, 2013:673-686.

共引文献164

同被引文献110

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部