摘要
Comprehensive air quality model with extensions(CAMx)-decoupled direct method(DDM)was used to simulate ozone-NO_(x)-VOCs sensitivity of for May-November in 2016-2018 in China.Based on the relationship between the simulated ozone(O_(3))sensitivity values and the ratio of formaldehyde(HCHO)to NO_(2)(FNR)and the ratio of production rate of hydrogen peroxide(H_(2)O_(2))to production rate of nitric acid(HNO_(3))(P_(H_(2)O_(2))/P_(HNO_(3))),the localized range of FNR and P_(H_(2)O_(2))/P_(HNO_(3))thresholds in different regions in China were obtained.The overall simulated FNR values are about 1.640-2.520,and P_(H_(2)O_(2))/P_(HNO_(3))values are about 0.540-0.830 for the transition regime.Model simulated O_(3)sensitivities or region specific FNR or P_(H_(2)O_(2))/P_(HNO_(3))thresholds should be applied to ensure the accurate local O3 sensitivity regimes.Using the tropospheric column FNR values from ozone monitoring instrument(OMI)satellite data as an indicator with the simulated threshold values,the spatial distributions of O_(3)formation regimes in China are determined.The O_(3)sensitivity regimes from eastern to central China are gradually from VOC-limited,transition to NO_(x)-limited spatially,and moving toward to transition or NO_(x)-limited regime from 2005 to 2019 temporally.
基金
supported by National Key Research and Development Project(Nos.2018YFC0213504,2017YFC0213003,2016YFC0208905)