期刊文献+

基于压缩感知的HIFU回波信号降噪研究 被引量:10

Research on HIFU echo signal denoising based on compressed sensing technology
下载PDF
导出
摘要 由于传统的降噪处理方法很难干净地去除高强度聚焦超声(HIFU)信号中的噪声,提出利用压缩感知(CS)对HIFU回波信号进行降噪。在观测矩阵的设计中将传统的高斯随机观测矩阵改进为稀疏循环结构化矩阵,减少了构造观测矩阵和重构信号的时间。仿真实验表明,与带通滤波器、小波降噪方法和经验模态分解(EMD)降噪方法相比,该方法得到的信号的重构信噪比(RSNR)更高,重构均方差(RMSE)和最大误差(ME)更小。用不同方法对不同温度下获得的HIFU回波信号进行去噪并提取二次谐波激发效率,发现采用该方法得到的二次谐波激发效率曲线方差和波动更小,验证了该降噪方法在实测信号中的优越性。 Since the traditional denoise method is difficult to fully remove the noise in the high intensity focused ultrasound(HIFU)signal,it is proposed to use compressed sensing(CS)to denoise of HIFU echo signals.In the design of the observation matrix,the traditional Gaussian random observation matrix is improved to a sparse circular structured matrix,reduced time to construct observation matrix and reconstruct signal.Simulation experiments show that compared with the band-pass filter,wavelet denoise method and empirical mode decomposition(EMD)denoise method,the proposed method has higher reconstruction signal-to-noise ratio(RSNR),both reconstruction mean square error(RMSE)and maximum error(ME)are smaller.Using different methods to denoise HIFU echo signals obtained at different temperatures and extract the second harmonic excitation efficiency,it is found that the variance and fluctuation of the second harmonic excitation efficiency curve obtained by this method are smaller,which validate the denoise method superiority in actual signal.
作者 颜上取 汤昊 刘备 张含 钱盛友 Yan Shangqu;Tang Hao;Liu Bei;Zhang Han;Qian Shengyou(School of Physics and Electronics,Hunan Normal University,Changsha 410081,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第11期19-25,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(11774088,11474090) 湖南省自然科学基金(2016JJ3090)资助项目
关键词 高强度聚焦超声 降噪 压缩感知 稀疏循环结构化矩阵 二次谐波激发效率 high intensity focused ultrasound(HIFU) denoise compressed sensing the sparse circular structured matrix second harmonic excitation efficiency
  • 相关文献

参考文献12

二级参考文献213

共引文献893

同被引文献107

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部