期刊文献+

基于DDQN的无人机区域覆盖路径规划策略 被引量:1

UAV regional coverage path planning strategy based on DDQN
下载PDF
导出
摘要 基于深度强化学习方法对未知环境的无人机区域覆盖路径规划进行研究,通过搭建栅格环境模型,在环境中随机部署无人机和禁飞区位置,利用双深度Q网络(DDQN)训练无人机的覆盖策略,得到了一套基于DDQN的无人机未知区域覆盖路径规划框架。仿真实验表明,设计的无人机未知区域覆盖路径规划框架在无禁飞区的环境下可以实现完全覆盖,在含有未知数量的禁飞区下也能比较好的完成区域覆盖任务,与DQN方法比较,其平均覆盖率能够在相同训练条件和训练次数下高出2%,与Q-Learning方法和Sarsa方法对比,在无禁飞区的环境中分别高出4%和3%。 The path planning of UAV area coverage in unknown environment is studied based on deep reinforcement learning method.By building agrid environment model,randomly deploying UAV and no-fly zone in the environment,and using a double deep Q-network(DDQN)to train the coverage strategy of UAV,a set of UAV coverage path planning framework base on DDQN is obtained.The simulation experiment shows that the designed UAV unknown area coverage path planning framework can achieve full coverage in the environment without no fly zone,and can also better complete the area coverage task in the environment with an unknown number of no fly zones.Compared with DQN method,its average coverage rate can be 2%higher under the same training conditions and training rounds,higher than Q Learning method and Sarsa method in the environment without no fly zone.
作者 沈骁 赵彤洲 Shen Xiao;Zhao Tongzhou(School of Computer Science&Engineering Artificial Intelligence,Wuhan Institute of Technology,Wuhan 430205,China;Hubei Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《电子测量技术》 北大核心 2023年第14期30-36,共7页 Electronic Measurement Technology
基金 国家重点研发计划(2016YFC0801003)项目资助
关键词 未知环境 区域覆盖 深度强化学习 路径规划 unknown environments area coverage deep reinforcement learning path planning
  • 相关文献

参考文献4

二级参考文献41

  • 1郑昌文,严平,丁明跃,苏康.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446. 被引量:94
  • 2张家旺,韩光胜,张伟.Q学习算法在RoboCup带球中的应用[J].系统仿真技术,2005,1(2):84-87. 被引量:3
  • 3杜萍,杨春.飞行器航迹规划算法综述[J].飞行力学,2005,23(2):10-14. 被引量:62
  • 4原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794. 被引量:73
  • 5Watkins C J C H. Learning from delayed rewards[D].Cambridge,UK:King’ s College,University of Cambridge,1989.1-55.
  • 6Cheng Ke. Multi-robot coalition formation for distributed area coverage[D].Omaha,USA:Computer Science De-partment,University of Nebraska,2011.3-55.
  • 7Minsky M L. Theory of neural-analog reinforcement systems and its application to the brain-model problem[M].Princeton,USA:Princeton University,1954.5-23.
  • 8Fazli P,Davoodi A,Mackworth A K. Multi-robot repeated area coverage:Performance optimization under various visual ranges[A].Toronto,Canada:IEEE,2012.298-305.
  • 9Hazon N,Mieli F,Kaminka G A. Towards robust on-line multi-robot coverage[A].Singapore City,Singapore:IEEE,2006.1710-1715.
  • 10Jeon H S,Ko M C,Oh R. A practical robot coverage algorithm for unknown environments[M].Berlin,Germany:Springer-Verlag Berlin Heidelberg,2010.129-140.

共引文献16

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部