期刊文献+

基于SSD算法的航空发动机内部凸台缺陷检测 被引量:8

Defect detection of aircraft engine internal convex based on SSD algorithms
下载PDF
导出
摘要 基于深度学习的背景,提出将目标检测算法用于航空发动机内部凸台缺陷的检测研究。首先介绍了算法的主要特点,通过使用聚类分析方法改进算法产生默认框的生成方式,提高了算法模型对发动机内部凸台缺陷的匹配能力;并采用多种图像处理算法相结合,对目标图像进行预处理来突出凸台缺陷的主要特征,增强了算法模型提取待检测目标的特征信息,从而进一步提高检测算法对于航空发动机凸台缺陷的检测精度。最终检测算法对于凸台缺陷的检测精度达到了95%以上。 Based on the background of deep learning,the target detection algorithm is proposed to detect the internal boss defects of aeroengine.Firstly,the main characteristics of the algorithm are introduced.By using clustering analysis method to improve the method of generating default frame,the matching ability of the algorithm model to engine internal boss defects is improved;and a variety of image processing algorithms are combined to preprocess the target image to highlight the main features of boss defects,which enhances the algorithm model to extract the features of the target to be detected Information,so as to further improve the detection accuracy of detection algorithm for Aeroengine boss defects.The detection accuracy of the final detection algorithm for convex defects is over 95%.
作者 陈为 梁晨红 Chen Wei;Liang Chenhong(College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266000,China)
出处 《电子测量技术》 2020年第9期29-34,共6页 Electronic Measurement Technology
关键词 SSD算法 凸台缺陷检测 默认框 图像处理 SSD algorithm defect detection of convex platform default box image processing
  • 相关文献

参考文献9

二级参考文献134

  • 1孙妍,鲁涤强,陈启军.一种基于强跟踪的改进容积卡尔曼滤波器[J].华中科技大学学报(自然科学版),2013,41(S1):451-454. 被引量:14
  • 2常发亮,马丽,乔谊正.遮挡情况下基于特征相关匹配的目标跟踪算法[J].中国图象图形学报,2006,11(6):877-882. 被引量:16
  • 3LIVNY Y, YAN F, OI.SON M, et al. Automatic reconstruction of tree skeletal structures from point clouds [ J]. ACM Transactions on Graphics: Proceedings of ACM SIGC, RAPH Asia 2010, 2010, 29 (6): Article No. 151.
  • 4WANG X, LI Z, MAI Y, et al. Robust .denoising of unorganized point clouds [ C]// ICISS 2013: Proceedings of the 2011 Interna- tional Conference on Intelligent Computing and Integrated Systems. Piscataway: 1EEE, 2013:1-3.
  • 5ROSMAN G, DUBROVINA A, KIMMEL R. Patch-collaborative spectral surface denoising [ J]. Computer Graphics Forum, 2013, 32( 8):1 -12.
  • 6XU S, YANG Z, WU W. Algorithm of 3D reconstruction based on point cloud segmentation denoising [C]//ICISE 2010: Proceedings of the 2010 2nd International Conference on Information Science and Engineering. Piscataway: 1EEE, 2010:3510-3513.
  • 7YANG Z, XIAO D. A systemic point-cloud de-noising and smoot- hing method for 3D shape reuse [ C]//ICARCV 2012: Proceedings of the 2012 12th International Conference on Control Automation Ro- botics & Vision. Piscatawav: IEEE, 2012:1722-1727.
  • 8JUN S. Two-stage point-sampled model denoising by robust ellip- soid criterion and mean shift [ C]//Proceedings of the 2013 Third International Conference on Intelligent System Design and Engi- neering Applications. Washington, DC: IEEE Computer Society, 2013:1581 - 1584.
  • 9FLEISHMAN S, DRORI I, COHEN-OR D. Bilateral mesh denois- ing [ J]. ACM Transactions on Graphics: Proceedings of ACM SIG- GRAPH 2003, 2003, 22(3): 950-953.
  • 10GRIMM C, SMART W D. Shape classification and normal estima- tion for non-uniformly sampled, noisy point data [ J]. Computers & Graphics, 2011, 35(4): 904-915.

共引文献570

同被引文献49

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部