期刊文献+

基于Tree-CNN的飞机腐蚀铆钉分类 被引量:1

Corroded Rivet Classification Based on Tree-CNN
下载PDF
导出
摘要 针对目前飞机腐蚀铆钉分类准确率较低,且以手工检测为主的现状,提出一种基于Tree结构的CNN(Convolutional Neural Networks)分类算法用于飞机铆钉腐蚀分类。算法中Tree的深度和节点数由普通结构的CNN分类方法计算得到的铆钉类别的混淆矩阵决定,对于5分类的飞机铆钉实验,Tree的深度为3。经实验验证,所提出的Tree-CNN模型在飞机腐蚀铆钉数据集上分类精度达到86.5%,获得了较高的腐蚀铆钉分类准确率。 Considering that the accuracy of classification in corroded rivets is low and manual inspection is the main method,a Tree-CNN(Convolutional Neural Networks)classification method is proposed.This method is specially designed for classifying corroded rivets on aircrafts.In order to improve the classification accuracy of Tree-CNN method,the structure of the tree is determined by the confusion matrix of rivet categories which is calculated in normal CNN method.The depth of the tree is three for five-classification of corroded rivets.Experimental results show that by using the Tree-CNN method,the accuracy of classifying corroded rivets can reach up to 86.5%,which is effective in classification in corroded rivets.
作者 唐露 王从庆 TANG Lu;WANG Congqing(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《吉林大学学报(信息科学版)》 CAS 2020年第1期55-63,共9页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(61573185).
关键词 Tree结构 CNN网络 铆钉分类 混淆矩阵 tree structure convolutional neural networks(CNN)network rivet classification confusion matrix
  • 相关文献

参考文献9

二级参考文献112

共引文献667

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部