期刊文献+

基于最小二乘支持向量机的时变信道建模 被引量:5

Time-Varying Channel Modeling Using Least Square Support Vector Machine
原文传递
导出
摘要 基于2.55GHz市区微蜂窝多输入多输出信道实测数据,将机器学习中的最小二乘支持向量机(LS-SVM)算法应用于时变信道参数的建模中,建立了基于遗传算法(GA)优化的LS-SVM信道参数预测模型,对信道参数如时延扩展、接收端的水平角度扩展和垂直角度扩展的数据特征进行了学习,并实现了准确预测;同时通过与反向传播神经网络模型以及传统的LS-SVM模型进行比较,验证了算法的有效性.基于GA优化的LS-SVM模型能够在有限数据量下对信道参数的变化有着良好的适应性,可实现非线性时变信道参数的准确预测. Based on 2.55 GHz urban microcellular multiple-input multiple-output(MIMO)channel measurement data,the least squares support vector machine(LS-SVM)method was applied on time-varying channel model.Specifically,a genetic algorithm(GA)based LS-SVM(GA+LS-SVM)model was established for channel parameter prediction.Based on GA+LS-SVM model,the time-varying channel parameters,such as delay spread,horizontal angle spread and vertical angle spread of receiver,were investigated and predicted accurately.Moreover,the GA+LS-SVM model was compared with back propagation neural network and traditional LS-SVM algorithms to verify the effectiveness of the algorithm.In summary,with limited amount of data the GA based LS-SVM model can better adapt to non-linear timevarying channel to realize the accurate prediction of nonlinear time-varying channel parameters.
作者 赵雄文 孙宁姚 耿绥燕 张钰 杜飞 ZHAO Xiong-wen;SUN Ning-yao;GENG Sui-yan;ZHANG Yu;DU Fei(School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第5期29-35,共7页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61771194) 北京市自然科学基金-海淀原始创新联合基金项目(17L20052) 北京市科委新一代信息通信技术培育项目(Z181100003218007).
关键词 时变信道 最小二乘支持向量机 遗传算法 反向传播神经网络算法 time-varying channel least square support vector machine genetic algorithm back propagation neural network
  • 相关文献

参考文献10

二级参考文献87

  • 1缪科,张太镒,孙建成,汤少杰.正交频分复用系统非线性信道估计算法[J].西安交通大学学报,2005,39(6):637-640. 被引量:4
  • 2孙建成,张太镒,刘枫.一种新的快速衰落信道非线性预测算法[J].北京航空航天大学学报,2005,31(5):499-503. 被引量:4
  • 3周水生,詹海生,周利华.训练支持向量机的Huber近似算法[J].计算机学报,2005,28(10):1664-1670. 被引量:2
  • 4相征,张太镒,孙建成.基于最小二乘支持向量机的衰落信道预测算法[J].电子与信息学报,2006,28(4):671-674. 被引量:3
  • 5袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712. 被引量:48
  • 6Rey F, Lamarca M, Vazquez G. Robust power allocation algorithms for MIMO-OFDM systems with imperfect CSI [J]. IEEE Transactions on Signal Processing (S1053-587X), 2005, 53(3): 1070-1085.
  • 7Chatterjee S Femando. W. A. C. Blind estimation of channel and modulation scheme in adaptive modulation schemes for OFDMCDMA based 4G systems [J]. IEEE Transactions on Consumer Electronics (S0098-3063), 2004, 50(4): 1065-1075.
  • 8LE Y. Pilot-symbol-aided channel estimation for OFDM in wireless systems [J]. IEEE Transactions on Vehieular Technology: (S0018-9545), 2000, 49(4): 1207-1215.
  • 9YANG B G, LETAIEF K B, CHENG R S, et al .Windowed DFT based pilot-symbol-aided channel estimation for OFDM systems in multipath fading channels [C]//Proc IEEE VTC'2000, Tokyo, Japan. USA: IEEE Press, 2000: 1480-1484.
  • 10MICHELE M, UMBERTO M. A comparison of pilot-aided channel estimation methods for OFDM system [J]. IEEE Transactions on Signal Processing (S1053-587X), 2001, 49(12): 3065-3073.

共引文献90

同被引文献25

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部