期刊文献+

深度学习机制与小波融合的超分辨率重建算法 被引量:5

Super-resolution reconstruction algorithm based on deep learning mechanism and wavelet fusion
下载PDF
导出
摘要 深度学习技术在超分辨率重建领域中发展迅速。为了进一步提升重建图像的质量和视觉效果,针对基于生成对抗网络(GAN)的超分辨率重建算法重建图像的纹理放大后不自然的问题,提出了一种结合小波变换和生成对抗网络的超分辨率重建算法。所提算法在生成对抗网络中将小波分解的每个分量在各自独立的子网中进行训练,实现网络对小波系数的预测,有效地重建出具有丰富的全局信息和局部纹理细节信息的高分辨率图像。实验结果表明,对比基于生成对抗网络的算法,所提算法重建图像的客观评价指标峰值信噪比(PSNR)和结构相似性分别能提高至少0.99 dB和0.031。 Deep learning technology has developed rapidly in the field of super-resolution reconstruction.In order to further improve the quality and visual effect of reconstructed images,this paper proposes a superresolution reconstruction based on wavelet transform and generative adversarial networks(GAN)for the unnatural problem of texture reconstruction based on the super-resolution reconstruction algorithm of GAN.In this paper,each component of the wavelet decomposition in the GAN is trained in separate subnets to realize the prediction of wavelet coefficients by the network.Effectively reconstruct high-resolution images with rich global information and local texture details.The experimental results show that the peak signal-to-noise ratio(PSNR)and structural similarity of the objective evaluation index of the reconstructed image can be improved by at least 0.99 dB and 0.031,respectively,based on the algorithm of GAN.
作者 杨思晨 王华锋 王月海 李锦涛 王赟豪 YANG Sichen;WANG Huafeng;WANG Yuehai;LI Jintao;WANG Yunhao(School of Information,North China University of Technology,Beijing 100144,China;School of Software,Beihang University,Beijing 100083,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第1期189-197,共9页 Journal of Beijing University of Aeronautics and Astronautics
关键词 小波变换 生成对抗网络(GAN) 超分辨率重建 深度学习 多分辨分析 wavelet transform generative adversarial network(GAN) super-resolution reconstruction deep learning mult-iresolution analysis
  • 相关文献

参考文献2

二级参考文献9

共引文献10

同被引文献41

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部