期刊文献+

基于多目标和贝叶斯优化的短期负荷区间预测 被引量:4

Short-term load interval forecasting based on multi-objective and bayesian optimization
下载PDF
导出
摘要 新能源并网后的供电体系存在具有较高的间歇性和随机性,这将为电力生产和调度的平衡带来巨大挑战,而如何量化电力负荷的不确定性对电力系统安全经济地运行起着重要作用。为此,提出一种基于多目标和贝叶斯优化(multi-objective optimization and Bayesian optimization,MOBO)的深度学习区间预测模型,能在给定的置信水平下描述电力负荷的变化趋势。在预测模型的构建过程中,依据分位数回归理论计算出电力负荷在不同分位点处的预测区间,再通过有效性检验,筛选出合理的预测模型。同时,采用多目标优化和贝叶斯优化算法理论对深度学习模型的超参数进行调优。使用美国纽约州米尔伍德的电力负荷数据集对所提出的模型进行验证,实验结果表明,与其他模型相比,模型在不同置信水平下均有着更高的预测区间覆盖率和更窄的区间平均宽度,更能精确地描述未来电力负荷的波动范围。 The grid connected power supply system of new energy has high intermittency and uncertainty,which will bring great challenges to the balance of power production and dispatching.How to quantify the uncertainty of power load plays an important role in the safe and economical operation of power system.Therefore,this paper proposes a deep learning interval prediction model based on multi-objective optimization and Bayesian optimization(MOBO),which can describe the variation trend of power load at a given confidence level.In the process of building the prediction model,we calculated the prediction interval of power load at different points according to the quantile regression theory,and then screened the reasonable prediction model through the validity test.At the same time,multi-objective optimization and Bayesian optimization algorithm theory are used to tune the hyperparameters of the deep learning model.In this paper,the power load dataset of Millwood,New York,USA is used to verify the proposed model.The experimental results show that the proposed model has greater prediction interval coverage probability and smaller prediction interval normalized average width at different confidence levels than other models,besides more accurately describes the fluctuation range of future electricity load.
作者 杜茂康 张雪 肖玲 江河 Du Maokang;Zhang Xue;Xiao Ling;Jiang He(School of Economics and Management,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Mathematics and Statistics,Xuzhou University of Technology,Xuzhou 221018,China;School of Statistics,Jiangxi University of Finance and Economics,Nanchang 330013,China)
出处 《国外电子测量技术》 北大核心 2023年第1期49-57,共9页 Foreign Electronic Measurement Technology
基金 国家自然科学基金(71901045) 重庆市教委科学技术研究项目(KJQN202100604) 成渝双城经济圈科技创新项目(KJCX2020027) 江西省自然科学基金(20212ACB211003)项目资助
关键词 深度学习 分位数回归 多目标优化 贝叶斯优化算法 短期电力负荷 区间预测 deep learning quantile regression multi-objective optimization Bayesian optimization algorithm short-term power load interval prediction
  • 相关文献

参考文献19

二级参考文献248

共引文献376

同被引文献40

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部