期刊文献+

基于改进K-medoids聚类和SVM的异常用电模式在线检测方法 被引量:8

Online detection method for abnormal electricity model behavior based on improved K-medoids clustering and SVM
下载PDF
导出
摘要 窃电已成为电网电能非技术损失的主要问题,快速捕捉用户用电异常行为数据,精准定位窃电用户位置成为研究关键。针对现有异常用电辨识精度低的问题,提出一种基于改进K-medoids聚类和支持向量机(support vector machines,SVM)的用电异常行为在线检测方法。首先提取并分析电网电量及其相关表征数据,在此基础上构建基于用电量、线损等用电异常参数特性表征指标;然后对用户用电相关数据进行清洗、缺省值补全,并采用基于密度权重Canopy的改进K-medoids算法将异常数据依据表征指标进行标签化聚类;最后将已获得标签的数据采用SVM分类器进行训练进一步完成异常参数的检测和评估,并通过电网实际运行数据验证了所提异常数据辨识方法的检测精度,研究可为电网异常用电的辨识提供理论基础。 Stealing electricity has become the main problem of non-technical loss of power grid.It is the key to quickly capture the abnormal behavior data of users′electricity and accurately determine the location of users.In order to solve the problem of low identification accuracy of abnormal power consumption data,an online detection method of abnormal electricity consumption behavior based on improved K-medoids clustering and support vector machine is proposed.Firstly,the power grid power and its related characterization data are extracted and analyzed.On the basis,the characteristic index of power consumption abnormal parameters is constructed based on the power consumption,line loss and so on.Then,the user electricity related data is cleaned,and the improved K-medoids algorithm based on density weight Canopy is used to cluster the abnormal data according to the characterization index.Finally,the acquired tag data is trained by SVM classifier to further complete the detection and evaluation of abnormal parameters.The detection accuracy of the proposed method is verified by the actual operation data of power grid.This study can provide a theoretical basis for the identification of abnormal power consumption in grid.
作者 胡聪 徐敏 洪德华 刘翠玲 薛晓茹 王海鑫 Hu Cong;Xu Min;Hong Dehua;Liu Cuiling;Xue Xiaoru;Wang Haixin(Information and Communication Branch of State Grid Anhui Electric Power Co.Ltd.,Hefei 230061,China;School of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《国外电子测量技术》 北大核心 2022年第2期53-59,共7页 Foreign Electronic Measurement Technology
基金 国家电网有限公司信息系统数据治理项目(SGAHXT00XYJS2000346) 辽宁省自然科学基金(2020-BS-141)项目资助
关键词 用电异常 电力数据 改进K-medoids聚类 支持向量机 辨识精度 abnormal power consumption power data improved K-medoids clustering support vector machine identification accuracy
  • 相关文献

参考文献18

二级参考文献192

共引文献309

同被引文献104

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部