期刊文献+

Carboxy Cellulose as Cathode Interfacial Layer for Efficient Organic Solar Cells 被引量:8

Carboxy Cellulose as Cathode Interfacial Layer for Efficient Organic Solar Cells
下载PDF
导出
摘要 Green, biodegradable, and eco-friendly interface materials based on cellulose and its derivatives were prepared for organic solar cells(OSCs). In this work, calcium and two derivatives of cellulose with different carboxy acid groups, denoted as Cellulose-COOH and Cellulose-(COOH)n, were used as cathode interfacial layers of OSCs, and a blend of the low-band-gap semiconducting polymers thieno[3, 4-b]thiophene/benzodithiophene(PTB7)and [6, 6]-phenyl C71-butyric acid methyl ester(PC71BM) was chosen as the photoactive layer. OSCs were fabricated with a configuration of indiumdoped tin oxide(ITO)/poly(3, 4-ethylenedioxythiophene) : polystyrene sulfonate(PEDOT: PSS)/PTB7: PC71BM/Ca or Cellulose-COOH or Cellulose-(COOH)n/Al. As a result, the effect of cellulose-COOH was the best one among them, and the power conversion efficiency(PCE) reached 8.21%for the devices with cathode interfacial layer of Cellulose-COOH, which was better than that of OSCs using calcium as a modifier(PCE=7.95%). The favorable performance is attributed to the reduced work function and improved electron transfer caused by the introduction of carboxy cellulose between the active layer and the electrode. The developed technology shows great potential in accelerating the diversified applications of cellulose and producing cost-effective and eco-friendly interfaces for OSCs. Green, biodegradable, and eco-friendly interface materials based on cellulose and its derivatives were prepared for organic solar cells(OSCs). In this work, calcium and two derivatives of cellulose with different carboxy acid groups, denoted as Cellulose-COOH and Cellulose-(COOH)n, were used as cathode interfacial layers of OSCs, and a blend of the low-band-gap semiconducting polymers thieno[3, 4-b]thiophene/benzodithiophene(PTB7)and [6, 6]-phenyl C71-butyric acid methyl ester(PC71BM) was chosen as the photoactive layer. OSCs were fabricated with a configuration of indiumdoped tin oxide(ITO)/poly(3, 4-ethylenedioxythiophene) : polystyrene sulfonate(PEDOT: PSS)/PTB7: PC71BM/Ca or Cellulose-COOH or Cellulose-(COOH)n/Al. As a result, the effect of cellulose-COOH was the best one among them, and the power conversion efficiency(PCE) reached 8.21%for the devices with cathode interfacial layer of Cellulose-COOH, which was better than that of OSCs using calcium as a modifier(PCE=7.95%). The favorable performance is attributed to the reduced work function and improved electron transfer caused by the introduction of carboxy cellulose between the active layer and the electrode. The developed technology shows great potential in accelerating the diversified applications of cellulose and producing cost-effective and eco-friendly interfaces for OSCs.
出处 《Paper And Biomaterials》 2020年第1期14-21,共8页 造纸与生物质材料(英文)
基金 financially supported by the National Natural Science Foundation of China(21674123,31700520) National Natural Science Foundation of Fujian Province(2018J01592) Project of “100 People Planning in Fujian Province”,New Century Excellent Talents in Fujian Province University(KLa17009A) International Cooperation Project of Fujian Agriculture and Forestry University(KXGH17003).
关键词 carboxy CELLULOSE CATHODE INTERFACIAL LAYER ORGANIC SOLAR cell carboxy cellulose cathode interfacial layer organic solar cell
  • 相关文献

同被引文献78

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部