期刊文献+

Performance evaluation of neural network TEC forecasting models over equatorial low-latitude Indian GNSS station 被引量:2

下载PDF
导出
摘要 Global Positioning System(GPS)services could be improved through prediction of ionospheric delays for satellite-based radio signals.With respect to latitude,longitude,local time,season,solar cycle and geomagnetic activity the Total Electron Content(TEC)have significant variations in both time and space.These temporal and spatial TEC variations driven by interplanetary space weather conditions such as solar and geomagnetic activities can degrade the communication and navigation links of GPS.Hence,in this paper,performance of TEC forecasting models based on Neural Networks(NN)have been evaluated to forecast(1-h ahead)ionospheric TEC over equatorial low latitude Bengaluru e12:97+N;77:59+ET,Global Navigation Satellite System(GNSS)station,India.The VTEC data is collected for 2009 e2016(8 years)during current 24 th solar cycle.The input space for the NN models comprise the solar Extreme UV flux,F10.7 proxy,a geomagnetic planetary A index(AP)index,sunspot number(SSN),disturbance storm time(DST)index,solar wind speed(Vsw),solar wind proton density(Np),Interplanetary Magnetic Field(IMF Bz).The performance of NN based TEC forecast models and International Reference Ionosphere,IRI-2016 global TEC model has evaluated during testing period,2016.The NN based model driven by all the inputs,which is a NN unified model(NNunq)has shown better accuracy with Mean Absolute Error(MAE)of 3.15 TECU,Mean Square Deviation(MSD)of 16.8 and Mean Absolute Percentage Error(MAPE)of 19.8%and is 1 e25%more accurate than the other NN based TEC forecast models(NN1,NN2 and NN3)and IRI-2016 model.NNunq model has less Root Mean Square Error(RMSE)value 3.8 TECU and highest goodness-of-fit(R2)with 0.85.The experimental results imply that NNunq/NN1 model forecasts ionospheric TEC accurately across equatorial low-latitude GNSS station and IRI-2016 model performance is necessarily improved as its forecast accuracy is limited to 69 e70%.
出处 《Geodesy and Geodynamics》 2020年第3期192-201,共10页 大地测量与地球动力学(英文版)
基金 the research project titled"Implementation of Deep Learning Algorithms to Develop Web based Ionospheric Time Delays Forecasting System over Indian Region using Ground based GNSS and NAVigation with Indian Constellation(NAVIC)observations"sponsored by Science&Engineering Research Board(SERB)(A statutory body of the Department of Science&Technology,Government of India,New Delhi,India,vide sanction order No:ECR/2018/001701 Department of Science and Technology,New Delhi,India for funding this research through SR/FST/ESI-130/2013(C)FIST program
  • 相关文献

参考文献2

二级参考文献6

共引文献46

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部