摘要
采用热重微商(TG-DTG)法考察生物质稻壳与废轮胎共热解经催化与非催化热解油的热失重行为,并同0#柴油的热失重行为进行了比较;同时采用Achar微分法和Coats-Redfern积分法对热解油热失重蒸发过程的蒸发热进行了计算,并结合Satava和Bagch i法确定了热失重蒸发过程的机理函数,建立了0#柴油和在催化与非催化条件下得到的热解油蒸发过程的动力学方程,得出了在催化与非催化条件下热解油热失重过程的机理函数,其动力学方程为dα/dt=Ae-△vapH/RT(1-α)2;而0#柴油的热失重蒸发过程动力学方程为dα/dt=1.5Ae-△vapH/RT(1-α)2/3[1-(1-α)1/3]-1。蒸发热的顺序由大到小依次为,柴油>非催化热解油>SBA-15热解油>MCM-41热解油。结果表明,通过建立的模型函数得到的蒸发热与实验值非常接近。催化剂SBA-15和MCM-41的存在对降低高沸点馏分的物质具有一定作用,而SBA-15催化作用强于MCM-41。
Thermal behaviors of commercial diesel oil 0# and pyrolysis oil obtained from co-pyrolysis of biomass and waste tyre blend(with or without catalysts) were investigated by thermogravimetric analysis(TG-DTG).Through linear regression,the results illustrated that for pyrolysis oils the thermal kinetic follows the formula dα/dt=Ae-△vapH/RT(1-α)2and for diesel oil it follows the formula dα/dt=1.5Ae-△vapH/RT(1α)2/3[1-(1-α)1/3]-1.The evaporation heats calculated were 37.46 kJ·mol-1 for SBA-catalyzed pyrolysis oil,30.60 kJ·mol-1 for MCM-41-catalyzed pyrolysis oil,41.27 kJ·mol-1 for pyrolysis oil without using any catalyst, and 55.50 kJ·mol-1 for diesel oil 0#;these values were close to those reported in the literature.The existence of SBA-15 and MCM-41 as catalysts in the pyrolysis can reduce high fractions of the resultant pyrolysis oil;SBA-15 performed better than MCM-41 in reducing high fractions.
出处
《燃料化学学报》
EI
CAS
CSCD
北大核心
2007年第5期534-538,共5页
Journal of Fuel Chemistry and Technology
基金
国家自然科学基金(50576062)
山西省自然科学基金(200601120)
关键词
生物质
废轮胎
共热解
催化
热重分析
热解油
biomass
waste tyre
co-pyrolysis
catalysis
thermal analysis
pyrolytic oil