期刊文献+

一种应用于自适应降噪的变步长LMS算法 被引量:4

A Variable Step size LMS Algorithm Applied to Adaptive Noise Cancellation
下载PDF
导出
摘要 通过建立步长因子μ与误差信号е之间的非线性关系,提出一种改进的变步长LMS算法,并将其应用于通信降噪。该算法除了具有传统固定步长LMS算法计算量小、稳定性好、简单、易于实时处理等优点外,理论分析及计算机仿真结果表明,其收敛速度及稳定性优于SVSLMS算法,且不需要进行指数运算,计算复杂度低于SVSLMS算法,用于通信降噪取得了较好的效果。 An improved variable step size adaptive filtering algorithm is presented by building a nonlinear function relationship between μ and error signale,and it is applied to the noise cancelling system of communication.The algorithm is simple and easy to be implemented.Theoretical analysis and computer simulation show that the properties of the algorithm such as convergence speed,steady state error are better than those of SVSLMS algorithm.And it obtains good results in the noise cancelling system of communication.
出处 《噪声与振动控制》 CSCD 北大核心 2007年第4期110-111,共2页 Noise and Vibration Control
关键词 声学 LMS算法 变步长 自适应滤波 噪声抵消 acoustics LMS algorithm variable step size adaptive filtering noise cancelling
  • 相关文献

参考文献5

  • 1覃景繁,欧阳景正.一种新的变步长LMS自适应滤波算法[J].数据采集与处理,1997,12(3):171-174. 被引量:281
  • 2Haykin S.自适应滤波器原理(第三版)[M].北京:电子工业出版社,1998..
  • 3[5]Kwong R H Johnston E W.A Variable Step Size LMS Algorithm[J].IEEE Trans on Signal P roc,1992,40(7):1633-1642.
  • 4[6]YE Hua,Wu Boxiu.A Robust Adaptive Filtering Algorithm with Variable Step Size[OL].http://lelhis.com.1986.
  • 5[7]Karni S,Zeng G.A New Convergence Factor for Adaptive Filters[J].IEEE Trans.Circuits Syst.1989,36:1011-1012.

二级参考文献1

共引文献281

同被引文献29

  • 1王金福,李富才.机械故障诊断的信号处理方法:频域分析[J].噪声与振动控制,2013,33(1):173-180. 被引量:50
  • 2唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 3Paulo S.R.Diniz,自适应滤波算法与实现(第二版).北京:电子工业出版社,2004.
  • 4Tarek I.Haweel,Member, "A Class of Statistic LMS Algorithms" .IEEE transaction on signal processing,Vol.40.no.1,pp, 44-46.
  • 5曹斌芳,何怡刚,李建奇,方葛丰,刘慧.3种改进型LMS算法在噪声抵消中的仿真比较[J].电声技术,2007,31(9):66-69. 被引量:8
  • 6World Wind Energy Association. The world wind energyassociation 2013 half year report[M]. Bonn:World WindEnergy Association, 2013. 2-3.
  • 7Stefan Faulstich, Michael Durstewitz, et al. Germany windenergy report 2008[M]. Kassel:Institute for Solar EnergySupply Technology, 2008: 24-26.
  • 8Z. Hameed, Y. S. Hong, et al. Condition monitoring andfault detection of wind turbines and related algorithms: Areview[J]. Renewable & Sustainable Energy Reviews,2009, 13: 1-39.
  • 9B. Widrow. Adaptive noise cancelling: principles andapplications[J]. Proceedings of the IEEE, 1975, 63: 1692-1716.
  • 10J. Antoni, R. B. Randall. Unsupervised noise cancellationfor vibration signals: part I - evaluation of adaptivealgorithms[J]. Mechanical Systems and SignalProcessing, 2004, 18: 89-101.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部