期刊文献+

基于线性代数和正则化方法的驻留时间算法 被引量:28

Dwell time algorithm based on matrix algebra and regularization method
下载PDF
导出
摘要 将加工的数学模型由去除函数与驻留时间的卷积过程转变为去除矩阵与驻留时间向量的乘积过程,从而将驻留时间的计算变为线性方程的求解。因测量误差而引入的噪声导致了方程的病态,传统的数值计算方法失效,因此,用Tik-honov正则化对建立的模型进行求解。采用了无须任何先验知识的自适应方法选取正则化参数。对同一组数据采用其他的驻留时间算法进行计算并对比,精度提高了30%以上。最后对一组面形数据使用实际参数进行了模拟加工,加工后的PV、RMS的收敛比率分别达到0.48,0.62,满足实际驻留时间的求解要求。该方法稳定收敛,精度高,设置灵活,是一种较实用的驻留时间算法。 A novel algorithm to solve dwell time based on linear algebra (matrix-based algorithm) is discussed, in which math model changes the fabrication process from convolution to matrix product, so that the calculation of the dwell time becomes a solution to linear equations. Traditional factorization methods such as Gaussian elimination and total least squares can not be used because the linear equations are severely ill condition. So, the Tikhonov regularization is used to solve the ill-posed problem caused by meterage error, and the regularization parameter is determined adaptive method without any prior knowledge. By comparing with different algorithms, the advantages of the matrix-based algorithm are obviously with the precision enhancing 30%. In the end, an error data is solved with actual parameters using the matrix-based algorithm. The simulation results show that the convergence rates of the PV and RMS values can reach up to 0.48 and 0.62, respectively. The matrix-based algorithm can satisfy the requirement of fabrication very well.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第7期1009-1015,共7页 Optics and Precision Engineering
基金 国家杰出青年基金资助项目(No.6992512) 长春光机所二期创新基金资助项目
关键词 非球面加工 驻留时间算法 正则化方法 Calculations Convergence of numerical methods Least squares approximations Linear algebra Linear equations Mathematical models Matrix algebra Polishing
  • 相关文献

参考文献10

  • 1[1]RUPP W J.The development of optical surfaces during the grinding process[J].Appl.Opt.,1965,4(6):743-748.
  • 2[2]JONES R A.Optimization of computer controlled polishing[J].Appl.Opt.,1977,6(1):213-244.
  • 3[3]JANSSON P A.Deconvolution:with Applications in Spectroscopy[M].New York:Academic Press,1984.
  • 4[6]STAHL H P.Aspheric surface testing techniques[J].SPIE,1990,1332:66-76.
  • 5[8]CARNAL C L,EGERT C M,HYLTON K W.Advanced matrix-based algorithm for ion beam milling of optical components[J].SPIE,1992,1752:54-62.
  • 6[9]TIKHONOV A N.On solving incorrectly posed problem and method of regularization[J].Dokl Acad Nauk USSR,1963,15l(3):501-504.
  • 7[10]GOL UB G H,HANSEN P C.Tikhonov regularization and total least squares[J].SIAM Journal 0n Matrix Analysis and Application,2000,21(1):185-194.
  • 8[11]LEE E S,KANG M G.Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration[J].IEEE Trans on Image Processing,2003,12(7):826-837.
  • 9[12]HANSEN P C.The use of the L-curve in the regularization of discrete Ill-posed problems[J].SIAM J.SCI.Cornput.,1993,14:1487-1503.
  • 10[13]JONES R A.Computer-controlled optical surfacing with orbital tool motion[J].Optical Engineering,1986,25(6):785-790.

同被引文献216

引证文献28

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部