期刊文献+

具有学习能力的智能机器人体系结构研究 被引量:4

Research on intelligent robot architecture with learning ability
下载PDF
导出
摘要 智能机器人的体系结构是定义一个智能机器人系统各部分之间相互关系和功能分配、确定信息流通关系和逻辑上的计算结构 .针对特定的机器人及所要完成的任务 ,研究和设计了机器人的软件体系结构 .该体系结构包括感知融合列、动作规划列和学习评价及物理层、感知层、反应层、动作层、规划层和使命层 ,一共 2 0个功能模块 . The architecture.of intelligent robot is to define relationship between every modules and functon assignment, as well as to determine relationship of information flow and conputional architecture loggcally. In this paper, the soft architecture of robot is investagated and implemented for specical task finished by robot. The architecture composed of peception-fusion column, action-plan column and learning-evaluation column as well as objictive layer, peception layer, reflacion layer, action layer, planning l...
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第S1期58-60,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 智能机器人 体系结构 学习系统 intelligent robot architecture learning system
  • 相关文献

参考文献2

  • 1Sardis D R.Toward the realization of intelligent control[].Proceedings of Tricomm.1979
  • 2Brooks R A.A robust layered control system for mobile[].IEEE Journal of Robotics and Automation.1986

同被引文献55

  • 1徐玉如,肖坤.智能海洋机器人技术进展[J].自动化学报,2007,33(5):518-521. 被引量:52
  • 2NILSSON N. Shakey the robot[ R]. Menlo Park, USA: AI Center, SRI International, 1984.
  • 3BROOKS R. A Robust layered control system for a mobile robot[ J]. IEEE Journal of Robotics and Automation, 1986, 2(1) :14-23.
  • 4CONNELL J. SSS: a hybrid architecture applied to robot navigation[ C]//ICRA, Piscataway. USA: IEEE, 1992 : 2719 -2724.
  • 5BARTO A G, MAHADEVAN S. Recent advances in hierarchical reinforcement learning [J].Discrete Event Dynamic Systems : Theory and Applications, 2003,13 (4) : 41-77.
  • 6SUTTON R S, PRECUP D, SINGH S P. Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning [ J ]. Artificial Intelligence, 1999, 112(1-2) : 181-211.
  • 7PARR R. Hierarchical control and learning for Markov decision processes [ D ]. Berkeley, USA: University of California, 1998.
  • 8DIEFFERICH T G. Hierarchical reinforcement learning with the MAXQ value function decomposition [ J ]. Journal of Artficial Intelligence Research, 2000,13( 1 ) :227-303.
  • 9HOWARD R A. Dynamic probabilistic systems: semiMarkov and decision processes[ M]. New York: Wiley, 1971.
  • 10MAKAR R, MAHADEVAN S, GHAVAMZADEH M. Hierarchical multi-agent reinforcement learning [ C ]// ICAA. New York, USA: ACM, 2001:246-253.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部