摘要
Tests were carried out to study the strength deterioration of concrete cooled in air or by water after sub-high temperature at different level and varying with cycles. It is proved that the cross-shaped cracks turned up and extended little by little on the surface of specimen subjected to repeat sub-high temperature, the splitting failure is characterized by cross-shaped cracks after 30 cycles, the concrete strengths decrease rapidly at early stage and to be steady subsequently with the increase of the temperature cycles, the splitting-tensile strength is more sensitive to temperature cycles than the compressive strength, the decline of concrete strength is mainly controlled by the maximum temperature having reached, the ultrasonic velocity in concrete is also declined. On the basis of test results, the mechanisms of sub-high temperature to the strength deterioration of concrete are analyzed.The formulas for calculating the compressive and splitting-tensile strength of concrete relating to the variation of temperature are proposed.
Tests were carried out to study the strength deterioration of concrete cooled in air or by water after sub-high temperature at different level and varying with cycles. It is proved that the cross-shaped cracks turned up and extended little by little on the surface of specimen subjected to repeat sub-high temperature, the splitting failure is characterized by cross-shaped cracks after 30 cycles, the concrete strengths decrease rapidly at early stage and to be steady subsequently with the increase of the temperature cycles, the splitting-tensile strength is more sensitive to temperature cycles than the compressive strength, the decline of concrete strength is mainly controlled by the maximum temperature having reached, the ultrasonic velocity in concrete is also declined. On the basis of test results, the mechanisms of sub-high temperature to the strength deterioration of concrete are analyzed.The formulas for calculating the compressive and splitting-tensile strength of concrete relating to the variation of temperature are proposed.
基金
Funded by Outstanding Youth Science Foundation of Henan Province of China (No. 04120002300)