期刊文献+

面向场景的协同过滤推荐算法 被引量:27

Context Based Collaborative Filtering Recommendation Algorithm
下载PDF
导出
摘要 推荐系统是电子商务系统中最重要的技术之一。用户相似性度量方法是影响推荐算法准确率高低的关键因素,针对传统相似性度量方法存在的不足,利用云模型在定性知识表示以及定性、定量知识转换时的桥梁作用,提出一种在知识层面比较用户相似度的方法,克服了传统基于向量的相似度比较方法严格匹配对象属性的不足。进而以该方法为核心,提出一种面向场景的协同过滤推荐算法,该算法能够充分利用项目的分类信息,避免了传统算法把用户的整体打分作为单个向量的弊端。实验结果表明,算法可以在用户评分数据极端稀疏的情况下,仍能取得较高的推荐质量。 Similarity measuring methods is fundamental to collaborative filtering algorithm while the traditional ways are inefficacy especially when the user rating data are extremely sparse. A new kind of similarity measuring method was proposed, which compares the similarity of two users on knowledge level. Then based on this method, a context based collaborative filtering recommendation algorithm was put forward, which is well integrated with the classification information of items and avoids the shortcoming of treating all voting data of a user as a whole vector. Instead of trying to finding out users’ nearest neighbors on all items, the algorithm searches out classified friends according to each context. Experiments show the excellent performance of this approach.
出处 《系统仿真学报》 CAS CSCD 北大核心 2006年第z2期595-601,共7页 Journal of System Simulation
基金 国家自然科学基金(60496323 60375016) 973计划(2004CB719401)。
关键词 推荐系统 协同过滤 项目相似性 投票 云模型 recommendation system collaborative filtering items similarity voting cloud model
  • 相关文献

参考文献12

  • 1[1]A Dempster,N Laird,D Rubin.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,1977,39 (1):1-38.
  • 2[2]Thiesson B,Meek C,Chickering D,Heckerman D.Learning mixture of DAG models[C]// Uncertainty in Artificial Intelligence.Proceedings of the Fourteenth Conference (1998),Morgan Kaufman,1998:504-513.
  • 3[3]Sarwar B,Karypis G,Konstan J,Riedl J.Analysis of recommendation algorithms for E-commerce[C]//2nd ACM Conference on Electronic Commerce,2000:158-167.
  • 4[4]Wolf J,Aggarwal C,Wu K-L,Yu P.Horting hatches an egg:A new graph-theoretic approach to collaborative filtering[C]// Proceedings of the ACM SIGMOD International Conference on Knowledge Discovery and Data Mining.San Diego,1999:201-212.
  • 5[6]李德毅,杜鹚.不确定性人工智能[M].北京:国防工业出版社,2002:171-177.
  • 6李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:899
  • 7李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:405
  • 8李德毅.知识表示中的不确定性[J].中国工程科学,2000,2(10):73-79. 被引量:198
  • 9邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:559
  • 10[11]Sarwar B,Karypis G,Konstan J,Riedl J.Item-Based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International World Wide Web Conference.2001:285-295.

二级参考文献44

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:899
  • 2王梓坤.论混沌与随机[J].北京师范大学学报(自然科学版),1994,30(2):199-202. 被引量:16
  • 3李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1252
  • 4Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 5Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 6Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 7Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 8Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 9Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 10Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.

共引文献2018

同被引文献220

引证文献27

二级引证文献548

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部