期刊文献+

弹性力学求解体系的研究与进展 第十三届全国结构工程学术会议特邀报告 被引量:2

Research and Advances on Systematic Methodology for Elasticity
下载PDF
导出
摘要 本文介绍弹性力学对偶求解体系的近期研究和进展:(1)提出一种新的正交关系。不用辛几何的概念,直接导出对偶微分方程组;(2)基于新正交关系,建立二维弹性力学特征函数展开直接解法,求得含可对角化边界条件下的显式封闭解:(3)将对偶求解体系推广到多坐标方向,建立多坐标方向的对偶微分方程和求解体系。(4)采用偏微分方程的算子解法,建立了板状弹性体的弯曲理论,把它的解分解为弯曲齐次解、特解、和衰减解:(5)将对偶求解体系推广应用于厚板和薄板问题,建立了有关的对偶微分方程,正交关系和变分原理。 This paper presents some recent research work and advances on systematic methodology for elasticity, (i) A new orthogonality relationship is firstly proposed, and the related system of dual equations can be derived out directly without the concept of symplectic geometry; (ii) Based on the new orthogonality relationship, a direct solution method by eigenfunction expansion is established for 2-D elasticity, and thus, the explicit close solutions under diagonalizable boundary conditions can be obtained; (iii) ...
出处 《工程力学》 EI CSCD 北大核心 2004年第S1期150-163,共14页 Engineering Mechanics
基金 国家自然科学基金资助项目(10272063) 高等学校博士点基金资助项目(20020003044) 高等学校全国优秀博士论文作者专项基金资助项目(200242)
关键词 弹性力学 对偶求解体系 对偶微分方程 正交关系 变分原理 elasticity dual systematic methodology dual differential equation orthogonality relationship variational principles
  • 相关文献

参考文献16

二级参考文献45

共引文献172

同被引文献18

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2刘淼,罗恩,仲政.薄板动力学相空间非传统Hamilton变分原理与辛算法[J].固体力学学报,2007,28(2):207-211. 被引量:1
  • 3Benoy M B. An energy solution for the buckling of rectangular plates under non-linear in-plane loading [J]. Aeronautical Journal,1969, 73: 974-977.
  • 4Bert C W, Devarakonda K K. Buckling of rectangular plates subjected to nonlinearly distributed in-plane loading[J]. International Journal of Solids and Structures, 2003, 40(16): 4097-4106.
  • 5Devarakonda K K V, Bert C W. Buckling of rectangular plate with nonlinearly distributed compressive loading on two opposite sides: comparative analysis and results[J]. Mechanics of Advanced Materials and Structures,2004, 11(4-5): 433-444.
  • 6Jana P, Bhaskar K. Stability analysis of simplify-supported rectangular plates under non-uniform uniaxial compression using rigorous and approximate plane stress solutions[J]. Thin-Walled Structures, 2006, 44(5) : 507-516.
  • 7Xinwei Wang, Xinfeng Wang, Xudong Shi. Accurate buckling loads of thin rectangular plates under parabolic edge compressions by the differential quadrature method[J]. International Journal of Mechanical Sciences, 2007, 49(4): 447-453.
  • 8Xinwei Wang, Lifei Gan, Yihui Zhang. Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides[J]. Advances in Engineering Software, 2008, 39(6): 497-504.
  • 9Feng K, Qin M Z. The Sympledtic Methods for Computation of Hamiltonian Equations[C]. Proceedings Conference on Numerical Methods for PDE' s (Edited by Zhu Y L, Gao B Y), Berlin, Springer, Lecture Notes in Mathematecs, 1987: 1-37.
  • 10Timoshenko S. Theory of Plates and shells[M]. New York: McGRAW-HILL, 1940, 299-301.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部