摘要
鉴于水质评价中各指标的不确定性和模糊性,为了解决各单项水质指标评价结果的不相容问题,提高水质评价模型的分辨率,提出了一种有效的和通用的模型——投影寻踪分类模型。模型中密度窗口是求解局部密度的窗口半径,是由样本数据本身特性确定的局部宽度参数,主要通过试算或经验来确定,缺乏理论依据,该文对模型中密度窗口进行了理论改进,推导得出了计算的经验公式,时模型更具有科学性和稳定性。采用基于实码加速遗传算法寻找最优的投影方向,同时用投影方向信息研究了各评价指标对黄河水质的影响水平,取得了符合客观实际的分类结果,为黄河流域水保护和合理利用提供了决策依据。
In view of the uncertainty of indexes for evaluating water quality,in order to test the rationality of the criteria in evaluating water quality,resolve the incompatibility of the results of evaluating water quality indexes,and raise the distinguishment of the model of evaluating water quality,an effective and general model-Projection Pursuit Classification model was proposed.The density window breadth R of the model was improved throretically,making the model more scientific and stable.Real Coding based on ...
出处
《四川大学学报(工程科学版)》
EI
CAS
CSCD
北大核心
2008年第6期24-29,共6页
Journal of Sichuan University (Engineering Science Edition)
基金
国家自然科学基金重大项目资助课题(30490235)
关键词
水质评价
投影寻踪
基于实码加速遗传算法
evaluating water quality
projection pursuit
Real Coding based on Accelerating Genetic Algorithm