期刊文献+

一种广义最小二乘支持向量机算法及其应用 被引量:5

Generalized least squares support-vector-machine algorithm and its application
下载PDF
导出
摘要 最小二乘支持向量机(LS-SVM)是处理不可分样本集情况下模式分类的有效工具,但是该算法在处理很多实际分类问题时,表现出了一定的局限性。为了进一步增强最小二乘支持向量机的推广能力,提出一种通用的广义最小二乘支持向量机算法,并且把这种新算法首先应用到雷达一维距离像的识别中,实验表明新的算法能取得更好的识别效果。 Least Squares Support-Vector-Machines(LS-SVM) algorithm is an efficient project about pattern classification on unclassifiable sample set condition.While dealing with many factual pattern classification problems,this algorithm reflects certain limitation.A generalized LS-SVM algorithm was introduced to further improve the applicability of LS-SVM.This new method was applied to radar range profile s recognition.The experimental results show that this new method can achieve better recognition effect.
作者 吴宗亮 窦衡
出处 《计算机应用》 CSCD 北大核心 2009年第3期877-879,共3页 journal of Computer Applications
关键词 最小二乘支持向量机 不可分样本集 雷达一维距离像 Least Squares Support Vector Machine(LS-SVM) unclassifiable sample set radar range profile
  • 相关文献

参考文献2

二级参考文献40

  • 1朱家元 张恒喜.基于支持向量机的R&D项目中止决策研究[J].计算机科学,2002,29(9).
  • 2Müller K-R Smola A Rtsch G et al In: Schlkopf B Burges C J C Smola A J. Eds.Predicting time Series with Support vector machines[A].In: Schlkopf B, Burges C J C, Smola A J. Eds.Advances in Kernel Methods-Support Vector Learning[C].MA:MIT Press,1999.243-254.
  • 3Müller K-R Mika S Rtsch G et al.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
  • 4Schlkopf B Smola A Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10:1299-1319.
  • 5Cristianini N, Shawe-Taylor J. An Introduction to Support Vector machines[ M]. Cambridge, UK : Cambridge University Press, 2000.
  • 6Muller K-R, Mika S, Ratsch G, et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001,12(2) : 181 - 201.
  • 7Vapnik V N. The Nature of Statistical Learning Theory[M]. NY. Springer, 1995.
  • 8Scholkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of a High-dimensional Distribution[ R]. Technical Report MSR-TR-99-87, Microsoft Research, 1999.
  • 9Tax D, Duin R. Data Domain Description by Support Vectors[A]. In. Verleysen M.Ed. D. Proc. ESANN[C]. Brussels:Facto Press, 1999, 251 - 256.
  • 10Ben-Hur A, Horn D, Siegelmann H T, et al. Support Vector Clustering[J]. Journal of Machine Learning Research,2001,2:125-137.

共引文献66

同被引文献60

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部