摘要
最小二乘支持向量机(LS-SVM)是处理不可分样本集情况下模式分类的有效工具,但是该算法在处理很多实际分类问题时,表现出了一定的局限性。为了进一步增强最小二乘支持向量机的推广能力,提出一种通用的广义最小二乘支持向量机算法,并且把这种新算法首先应用到雷达一维距离像的识别中,实验表明新的算法能取得更好的识别效果。
Least Squares Support-Vector-Machines(LS-SVM) algorithm is an efficient project about pattern classification on unclassifiable sample set condition.While dealing with many factual pattern classification problems,this algorithm reflects certain limitation.A generalized LS-SVM algorithm was introduced to further improve the applicability of LS-SVM.This new method was applied to radar range profile s recognition.The experimental results show that this new method can achieve better recognition effect.
出处
《计算机应用》
CSCD
北大核心
2009年第3期877-879,共3页
journal of Computer Applications
关键词
最小二乘支持向量机
不可分样本集
雷达一维距离像
Least Squares Support Vector Machine(LS-SVM)
unclassifiable sample set
radar range profile