期刊文献+

基于数据挖掘的Snort系统改进模型 被引量:4

An improved model of Snort system based on data mining
下载PDF
导出
摘要 针对Snort系统对新的入侵行为无能为力的缺点,设计了一种基于数据挖掘理论的Snort网络入侵检测系统的改进模型。该模型在Snort入侵检测系统的基础上增加了正常行为模式挖掘模块、异常检测引擎模块和新规则生成模块,使得系统具有从新的入侵行为中学习新规则和从正常数据中学习正常行为模式的双重能力。实验结果表明,新模型不仅能够有效地检测到新的入侵行为,降低了Snort系统的漏报率,而且提高了系统的检测效率。 An improved model of the Snort network intrusion detection system based on the theory of data mining was proposed,regarding the problem that Snort is powerless to new types of intrusion.In the new model,normal behavior patterns mining module,anomaly detection engine module and new rules generating module were added to the Snort system.By these improvements the system has double capacity of learning rules from new intrusions and learning normal behavior patterns from normal data.The test result shows that ne...
出处 《计算机应用》 CSCD 北大核心 2009年第2期409-411,共3页 journal of Computer Applications
基金 教育部科学技术研究重点项目(208139) 陕西省自然科学研究计划资助项目(2006F37)
关键词 入侵检测 SNORT系统 数据挖掘 规则学习 intrusion detection Snort data mining rule learning
  • 相关文献

参考文献4

二级参考文献12

  • 1张博,李伟华,布日古德.数据挖掘中的关联规则在入侵检测系统中的应用[J].航空计算技术,2004,34(4):124-127. 被引量:5
  • 2宋世杰,胡华平,胡笑蕾,金士尧.数据挖掘技术在网络型误用入侵检测系统中的应用[J].计算机工程,2004,30(16):126-127. 被引量:9
  • 3Lee Wen-ke. A framework for constructing features and models for intrusion detection systems [ J]. ACM Transactions on Information and System Security,2000,3 (4) : 227-261.
  • 4Denning D E. An intrusion-detection model [ J ]. IEEE Transaction on Software Engineering, 1987,13:222-232.
  • 5Heberlein L T. A network security monitor [C]//Proceeding of the IEEE Symposium on Researching Security and Privacy. Oakland, CA : IEEE, 1990:296-304.
  • 6Lee W. A Data Mining Framework for Constructing Feature and Model for Intrusion Detection System [Paper of the Degree of Doctor of Philosophy in the Graduate School of Arts and Sciences]. Columbia University, 1999
  • 7Forrest S,Hofmeyr S A,Somauaji A.A Sense of Self for Unix Processes. Los Alamitos,CA:Proc of the 1996 IEEE Symp.on Security and Privacy, IEEE Computer Society Press, 1996:120-128
  • 8Rakesh A,Ramakishnan S.Mining Sequential Patterns. IBM Almaden Research Center, San Jose, California: Research Report RJ 9910, 1994
  • 9Cohen W W. Fast Effective Rule Induction. In Machine Learning: the 12th International Conference, Lake Taho, CA,1995
  • 10连一峰,戴英侠,王航.基于模式挖掘的用户行为异常检测[J].计算机学报,2002,25(3):325-330. 被引量:85

共引文献30

同被引文献25

  • 1杨德刚.基于特征检测与聚类分析协作的入侵检测系统模型[J].计算机研究与发展,2006,43(z2):425-429. 被引量:1
  • 2朱卫未,王卫平,梁樑.基于模糊聚类分析的入侵检测方法[J].系统工程与电子技术,2006,28(3):474-477. 被引量:11
  • 3周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 4贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 5Lee W, Stolfo S J.Data mining approaches for intrusion detection[C]//San Antonio T X.Proc 7 USENIX Security Symposium, 1998.
  • 6Sambasivam S, Theodosopoulos N.Adbanced data clustering methods of mining web documents[J].Issues in Informing Science and Information Techology, 2006,8 (3) : 563-579.
  • 7Wu Suyun, Yen E.Data mining-based intrusion deteetors[J].Expert Systems with Applications,2009,36(2):5605-5612.
  • 8Wuu L C,Hung C H, Chen S F.Building intrusion pattern miner for snort network intrusion detection system[J].The Journal of Systems and Software, 2007,80 (2) :1699-1715.
  • 9Corrected.gz[EB/OL].http://kdd.ics.uci.edu/databases/kddcup99/kd-dcup99.html.
  • 10University of California. KDD Cup 1999 DATASE'TS [EB/OL]. [2009-04-20]. http: //kdd. ieu uci. edu/databases/kddcup99/kdd- cup99, html.

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部