期刊文献+

赋广义Orlicz范数的Orlicz函数空间的k一致凸性 被引量:2

Uniform k-rotundity in Orlicz function spaces equipped with the generalized Orlicz norm
下载PDF
导出
摘要 给出了以右导函数为凸函数的N-函数生成的赋广义Orlicz范数的Orlicz函数空间k一致凸的条件. For the Orlicz function spaces generated by a N-function whose derivative on the right is convex and equipped with the generalized Orlicz norm,a sufficient and necessary condition is obtained to make them be uniform k-rotund.
出处 《浙江大学学报(理学版)》 CAS CSCD 2012年第5期512-516,共5页 Journal of Zhejiang University(Science Edition)
基金 波兰国家自然科学基金资助项目(201362236) 吉林省教育厅"十一五"科技项目(2010-214)
关键词 广义ORLICZ范数 ORLICZ函数空间 k一致凸 generalized Orlicz norm Orlicz function space uniform k-rotund
  • 相关文献

参考文献9

二级参考文献48

共引文献26

同被引文献13

  • 1LIU PeiDe,HOU YouLiang & WANG MaoFa School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China.Weak Orlicz space and its applications to the martingale theory[J].Science China Mathematics,2010,53(4):905-916. 被引量:23
  • 2CHEN Shu-tao. Geometry of Orlicz Spaces [-M, Warszawa.. Dissertations Math, 1996.
  • 3陈怡.广义Orlicz空间的一致凸性[D].苏州:苏州大学,2010.
  • 4CUI Yun-an, Hudzik H, LI Jing-jing, et al. Strengly Extreme Points in Orlicz Spaces Equipped with p-Amemiya Norm EJ. Nonlinear Analysis: Theory Method Applications, 2009, 71(12): 6343-6364.
  • 5DUAN Li-fen, XU Jing, CUI Yun-an. Extreme Points and Rotundity in Orlicz Sequence Spaces Equipped with p-Amemiya (lpc) Norm EJ. Journal of Jilin University.. Science Edition, 2012, 50(5): 902-906.
  • 6CHEN Shutao. Geometry of Orlicz Spaces EM. Warszawa: Dissertations Math, 1996.
  • 7Martinez S. An Optimization Problem with Volume Constraint in rlicz Spaces J. Journal of Mathematical Analysis and Applications, 2008, 340(2) : 1407-1421.
  • 8CUI Yun'an, DUAN I.ifen, Hudzik H, et al. Basic Theory of p Amemiya Norm in Orlicz Spaces (1≤p≤∞) : Extreme Points and Rotundity in Orlk'z Spaces Endowed with These Norms [J]. Nonlinear Analysis, 2008, 69(5/6): 1796- 1816.
  • 9CUI Yun' an, Hudzik H, LI Jingjing, et al. Strongly Extreme Points in Orliez Spaces Equipped with the p Amemiya Norm J. Nonlinear Analysis, 2009, 7l(12): 6343-6364.
  • 10季丹丹.赋Luxemburg范数的Musielak-Orlicz-Sobolev空间单调性在最佳逼近中的应用[J].数学的实践与认识,2011,41(16):214-221. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部