期刊文献+

时变Copula模型非参数估计的大样本性质 被引量:2

Large sample properties of nonparametric estimation in time-varying Copula model
下载PDF
导出
摘要 运用Copula模型研究随机变量间的相关结构,是近年来金融统计分析中的一个热点.在龚金国和史代敏提出时变Copula非参数模型的基础上,利用时间序列的极限理论研究了时变参数估计量的大样本性质,并给出了时变Copula模型的非参数估计算法.研究结果表明,时变Copula非参数模型的时变参数估计量具有一致性和渐近正态性. It becomes a hot topic in the financial statistics analysis that Copula model is applied to discuss the dependence structure among random variables.Based on the time-varying Copula nonparametric model given by GONG Jin-guo and SHI Dai-min(2011),this paper mainly discusses the large sample properties of the estimators of time-varying parameters by the asymptotic theory for time series and gives the algorithm of nonparametric estimation in time-varying Copula model.The result shows that the nonparametric estimators of time-varying parameters have consistency and asymptotic normality.
出处 《浙江大学学报(理学版)》 CAS CSCD 2012年第6期630-634,642,共6页 Journal of Zhejiang University(Science Edition)
基金 国家社会科学基金青年项目(12CTJ007) 国家自然科学基金面上项目(71171166 71171168) 教育部人文社会科学研究西部和边疆地区项目(11XJC910001) 西南财经大学科研基金资助项目(2011XG119) 西南财大"211工程"三期青年成长项目(211QN2011031)
关键词 时变COPULA 局部极大似然估计 一致性 渐近正态性 time-varying Copula local maximum likelihood estimation consistency asymptotic normality
  • 相关文献

参考文献9

  • 1PATTON A J. Modelling asymmetric exchange rate dependence[J].International Economic Review,2006.527-556.
  • 2BARTRAM S M,TAYLOR S J,WANG Y H. The Euro and European financial market dependence[J].Journal of Banking and Finance,2007.1461-1481.
  • 3THIERRY A,LOREDANA U R,CHIRAZ L M. Timevarying conditional dependence in Chinese stock markets[J].Applied Financial Economics,2008.895916.
  • 4HAFNER C,REZNIKOVA O. Efficient estimation of a semiparametric dynamic Copula model[J].Journal of Computational Statistics & Data Analysis,2010.2609-2627.
  • 5龚金国,史代敏.时变Copula模型的非参数推断[J].数量经济技术经济研究,2011,28(7):137-150. 被引量:12
  • 6CHEN X,FAN Y. Estimation and model selection of semi parametric Copula-baed multivariate dynamic models under copula misperceptions[J].Journal of Econometrics,2006.125-154.
  • 7LIN H,SONG P X K,ZHOU Q M. Varying-coefficient marginal models and applications in longitudinal data analysis[J].Sankhya,2007.581-614.
  • 8FAN J,GIJBELS I. Variable bandwidth and local linear regression smoothers[J].Annual Statistic,1992.2008-2036.
  • 9MASRY E. Multivariate regression estimation:Local polynomial fitting for time series[J].Stochastic Processes and their Applications,1996.81-101.

二级参考文献13

  • 1Bauwens, L., Laurent, S., and Rombouts, J., 2006, Multivariate GARCH Models Survey [J], Journal of Applied Econometrics, (21) . 79-109.
  • 2Patton, A.J., 2006, Modeling Asymmetric Exchange Rate Dependence [R]. International Eco- nomic Review, (47). 527-556.
  • 3Patton A. J. , 2006, Estimation of Multivariate Models for Time Series of Possibly Different Lengths [J]. Journal of Applied Econometrics, (21). 147-173.
  • 4Jondeau E, Rockinger M. , 2007, The Copula - GARCH Model of Conditional Dependencies.. An International Stock Market Application [J].Journal of International Money and Finance, (25) . 827-853.
  • 5Bartram S M, Taylor S J, Wang Y H, 2007, The Euro and European Financial Market Depend- ence [J]. Journal of Banking and Finance, (31) . 1461-1481.
  • 6Longin, F. , Solnik, B. , 1995, Is the Correlation in International Equity Returns Constant.. 1960 -1990 [J].Journal of International Money and Finance, (14). 3-26.
  • 7Engle R F, 2002, Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models [J]. Journal of Business and Economic Statistics, (20). 339-350.
  • 8Nelsen, R. , 1998, An Introduction to Copulas, Springer-Verlag [M], New York.
  • 9Fan, J. and Gijbels, I. , 1996, Local Polynomial Modelling and its Applications [M], Chapman and Hall, London.
  • 10Fan, J. , Zhang, C. M. and Zhang, J. , 2001, Generalized likelihood ratio statistics and Wilks phenomenon [J], The Annals of Statistics, (29). 153-193.

共引文献11

同被引文献16

  • 1吴振翔,叶五一,缪柏其.基于Copula的外汇投资组合风险分析[J].中国管理科学,2004,12(4):1-5. 被引量:50
  • 2Jean-David Fermanian J. Goodness-of-fit tests for Copulas[J]. Journal of Multivariate Analysis ,2005,95 ( 1 ) : 119-152.
  • 3Rob W J, van den Goorbergh, Christian Genest, et al. Bivariate option pricing using dynamic copula models [J]. Insurance : Mathematicsand Economics ,2005,37 : 101-114.
  • 4Genest C J, Quessy F, Remillard B. Goodness-of-fit procedures for copula models based on the probability integral transform[J]. Scandinavian Journal of Statistics,2006,33 (2) : 337-366.
  • 5Gudendorf G, Segers J. Nonparametric estimation of an extreme-value copula in arbitrary dimensions [J]. Journal of Multivariate Analysis,2011,102 ( 1 ) :37- 47.
  • 6Nelsen R B. An Introduction to Copulas[M]. 2nd ed. New York:Springer Science Business Media,2006:7-19,157-215.
  • 7Caperaie P, Fougares A L, Genest C. A nonparametric estimation procedure for bivariate extreme value copulas [J]. Biometrika, 1997,84( 3 ) :567-577.
  • 8Btlcher A, Dette H, Volgushev S. New estimators of the Pickands dependence function and a test for extreme-value dependence [J]. The Annals of Statistics,2011,39(4) :1963-2006.
  • 9Prakasa Rao B L S. Nonparametric Function Estimation[M]. London: Academic Press Inc, 1983.
  • 10ZHANG D, Wells M T, PENG L. Nonparametric estimation of the dependence function for a multivariate extreme evalue distributions [J]. Journal of Multivariate Analysis,2008,99 (4) :577-588.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部