期刊文献+

微波合成法制备LiFePO_4及其电化学性能 被引量:1

Electrochemical performance of LiFePO_4 prepared by microwave synthesis for Li-ion battery
下载PDF
导出
摘要 分别以草酸锂、草酸亚铁、磷酸二氢铵为锂源、铁源和磷源,苯蒽二元共聚物为还原剂合成前驱体,采用微波合成的方法制备了锂离子电池正极材料LiFePO4。采用扫描电镜(SEM)对产物进行物相表征,并采用恒流充放电的方法考察了样品作为锂离子电池正极材料的电化学性能。结果表明,650℃下制备的样品为纯橄榄石结构的LiFePO4,颗粒粒度为1~2μm;在2.5~4.2V电压范围内以0.2C倍率充放电时,首次放电比容量达到158.3mAh/g,经过20次充放电循环容量仍保持为157.9mAh/g,具有较好的倍率放电性能和容量保持能力。 Positive material LiFePO4 was synthesized by microwave-synthesis method,with Li2C2O4,FeC2O4,NH4H2PO4 as the raw materials,and benzanthracene copolymer as reducing agent.The products were characterized by scanning electron microscopy(SEM).Electrochemical properties of samples were investigated by constant-current charge/discharge method.Results showed that the sample synthesized at 650 ℃ was pure olive-type structure LiFePO4 with a particle size of 1~2 μm,and its initial discharge capacity was 158.3 mAh/g at 0.2 C in the voltage range of 2.5~4.2 V,which remained well after 20 cycles.The LiFePO4 prepared with this method had good rate performance and capacity retention performance.
出处 《电池工业》 CAS 2012年第2期85-88,共4页 Chinese Battery Industry
关键词 LIFEPO4 锂离子电池 微波合成 电化学性能 LiPePO4 Li-ion battery microwave synthesis electrochemical performance
  • 相关文献

参考文献9

二级参考文献61

  • 1朱先军,陈宏浩,詹晖,周运鸿.微粒溶胶-凝胶法合成LiNi_(0.75)Co_(0.25)O_2及表征[J].电池,2004,34(4):252-254. 被引量:4
  • 2[1]Goodenough J B,Manthiram A,Wnetrzewski B.Electrodes for lithium batteries[J].Power Source,1993,1(3):269-275.
  • 3[2]Koksbang R,Barker J,Shi H,et al.Cathode materials for lithium rocking chair batteries[J].Solid State Ionics,1996,1(2):1-21.
  • 4[3]Hzuku T,Kitagawa M,Hirai T.Electrochemistry of manganese-dioxide and electrochemical charactierization on deep discharge products of electrolytic manganese-dioxide[J].Electrochem Soc,1990(4):40-46.
  • 5[4]Guerfi A,Sevigny S,Lagace M.Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators[J].Power Source,2003(4):88-94.
  • 6[5]Subbarao S,Shen D H,Deligiannis F,et al.Advances in ambient-temperature secondary lithium cells[J].Power Source,1990(4):579-587.
  • 7[6]Franger S,Le Cras F,Bourbon C,et al.Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J].Power Source,2003(3):252-257.
  • 8[7]Takahashi M,Takei S I,Yoji K S.Reaction behaviour of LiFePO4 as a cathode material for rechargeable lithium batteries[J].Solid State Ionics,2002(4):283-289.
  • 9[8]Yamada A,Chung S C,Hinokuma K.Optimized LiFePO4 for lithium battery cathodes[J].Electrochem.Soc.,2001(3A):224-229.
  • 10[9]Kalaiselvi N,Doh C H,Park C W,et al.A novel approach to exploit LiFePO4 compound as an ambient temperature high capacity anode material for rechargeable lithium batteies[J].Electrochem.Commun.,2004(1):1110-1113.

共引文献44

同被引文献32

  • 1Scrosati B. Electrochim. A cta, 2000,45(15):2461-2466.
  • 2Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194.
  • 3Churikov A V, Ivanishchev A V, Ivanishcheva I A, et al. Electrochim. A cta, 2010,55(8):2939-2950.
  • 4Morgan D, Van der Ven A, Ceder G. Electrochem. Solid- State Lett., 2004,7(2):A30-A32.
  • 5Delacourt C, Poizot P, Levasseur S, et al. Electrochem. Solid-State Lett., 2006,9(7):A352-A355.
  • 6Sun C S, Zhou Z, Xu Z G, et al. J. Power Sources, 2009,193 (2):841-845.
  • 7Sun C S, Zhang Y, Zhang X J, et al. J. Power Sources, 2010, 195(11):3680-3683.
  • 8Wang Y G, He P, Zhou H S. Energy Environ. Sci., 2011,4 (3):805-817.
  • 9Wang J J, Sun X L. Erie rgy Environ. Sc i., 2012,5(1 ):5163-5185.
  • 10Saravanan K, Balaya P, Reddy M V, et al. Energy Environ. Sci., 2010,3(4):457-463.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部