期刊文献+

代价敏感Boosting算法研究 被引量:3

Cost-sensitive boosting algorithms
下载PDF
导出
摘要 针对代价敏感学习问题,研究boosting算法的代价敏感扩展。提出一种基于代价敏感采样的代价敏感boosting学习方法,通过在原始boosting每轮迭代中引入代价敏感采样,最小化代价敏感损失期望。基于上述学习框架,推导出两种代价敏感boosting算法,同时,揭示并解释已有算法的不稳定本质。在加州大学欧文分校(University of California,Irvine,UCI)数据集和麻省理工学院生物和计算学习中心(Center for Biological&Computational Learning,CBCL)人脸数据集上的实验结果表明,对于代价敏感分类问题,代价敏感采样boosting算法优于原始boosting和已有代价敏感boosting算法。 In terms of the problem of cost-sensitive learning,this paper investigates cost-sensitive extension of boosting.A cost-sensitive boosting learning framework is proposed based on cost-sensitive sampling.Through introducing cost-sensitive sampling in each round of naive boosting,the expectation of cost-sensitive loss is minimized.Under the above framework,two new cost-sensitive boosting algorithms are deduced.Meanwhile,issues of the instability existing in early cost-sensitive boosting algorithms are revealed and explained.Experimental results on UCI(University of California,Irvine)data set and CBCL(Center for Biological & Computational Learning)face data set demonstrate:in terms of the cost-sensitive classification problem,cost-sensitive sampling boosting algorithms outperform naive boosting and existing cost-sensitive boosting algorithms.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期19-24,31,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60974129 70931002) 国家科技重大专项(2011ZX04002-051) 中央高校基本科研业务费专项资金资助项目(NUST2011YBZM119)
关键词 BOOSTING 代价敏感boosting 代价敏感学习 代价敏感采样 boosting cost-sensitive boosting cost-sensitive learning cost-sensitive sampling
  • 相关文献

参考文献4

二级参考文献46

  • 1李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 2Breiman L, Friedman J H, Olshen R A, Stone C J. Classification and Regression Trees. Belmont, USA: Wadsworth, 1984.
  • 3Chan P, Stolfo S. Toward Scalable Learning with Non-Uniform Class and Cost Distributions. In: Proc of the 4th International Conference on Knowledge Discovery and Data Mining. New York, USA, 1998, 164-168.
  • 4Provost F, Fawcett T, Kohavi R. The Case against Accuracy Estimation for Comparing Induction Algorithms. In: Proc of the 15th International Conference on Machine Learning. Madison,USA, 1998, 445-453.
  • 5Domingos P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In: Proc of the 5th International Conference on Knowledge Discovery and Data Minging. San Diego, USA,1999, 155-164.
  • 6Domingos P. Knowledge Acquisition from Examples via Multiple Models. In: Proc of the 14th International Conference on Machine Learning. Nashville, USA, 1997, 98-106.
  • 7Bruha I, Kockova S. A Support for Decision Making: Cost-Sensitive Learning System. Artificial Intelligence in Medicine,1994, 6(7): 67-82.
  • 8Turney P. Cost-Sensitive Learning Bibliography. 1997. http://-ai. lit. nrc,ca/bibliographies/cost-sensitive, html.
  • 9Quinlan J R. C4. 5: Program for Machine Learning. San Marco,USA: Morgan Kaufmann, 1993.
  • 10Ting K M. An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE Trans on Knowledge and Data Engineering,2002, 14(3): 659-665.

共引文献16

同被引文献42

  • 1王涛,李舟军,颜跃进,陈火旺.数据流挖掘分类技术综述[J].计算机研究与发展,2007,44(11):1809-1815. 被引量:41
  • 2ZHOU Z Z. Cost-sensitive learning [C] //Modeling Decision for Artificial Intelligence Lecture Notes in Computer Science. Berlin: Springer, 2011, 6820:17 - 18.
  • 3SAHIN Y, BULKAN S, DUMAN E. A cost-sensitive decision tree approach for fraud detection [J]. Expert Systems with Applications, 2013, 40(15): 5916 - 5923.
  • 4LU S J, LIU L, LU Y, et al. Cost-sensitive neural network classifiers for postcode recognition [J]. International Journal of Pattern Recog- nition and Artificial Intelligence, 2012, 26(5): 1 - 14.
  • 5CAO E ZHAO D Z, ZAIANE O. A PSO-based cost-sensitive neural network for imbalanced data classification [C] I/Trerzds and Appli- cations in Knowledge Discovery and Data Mining Lecture Notes in Computer Science. Berlin: Springer, 2013, 7867:452 - 463.
  • 6CAO E ZHAO D Z, ZAIANE O. An optimized cost-sensitive SVM for imbalanced data learning [C] //Advances in Knowledge Discov- ery and Data Mining Lecture Notes in Computer Science. Berlin: Springer, 2013, 7819: 280- 292.
  • 7LOZANO A C, ABE N. Multi-class cost-sensitive boosting with p- norm loss functions [C]//Proceeding of the 14th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008:506 - 514.
  • 8MASNADI-SHIRAZI H, VASCONCELOS N. Cost-sensitive boost- ing [J]. Pattern Analysis and Machine Intelligence, 2010, 33(2): 294 - 309.
  • 9KINTALI S. Review of boosting: foundations and algorithms by Robert E. Schapire and Yoav Freund [J]. Sigact News, 2014, 45(1): 41 - 43.
  • 10ZHANG T. Statistical behavior and consistency of classification methods based on convex risk minimization [J]. The Annals of Statis- tics, 2004, 32(1): 56 -85.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部