期刊文献+

未知环境下机器人Q学习覆盖算法 被引量:2

Robot Q-learning coverage algorithm in unknown environments
下载PDF
导出
摘要 为提高未知环境下机器人区域覆盖率,提出一种Q-学习覆盖算法(QLCA)。对环境建立栅格模型,在栅格地图中随机部署机器人和障碍位置。机器人根据QLCA自主学习得到的Qtable指导其后续的动作选择和路径规划,减少了机器人移动次数。从机器人数目、环境等方面分析了各类参数变化对该算法的影响。仿真实验结果表明:与随机选择覆盖算法对比,QLCA在完成覆盖的执行步数及冗余效果等方面均有明显优化。 A Q-Learning coverage algorithm( QLCA) is presented to improve the area coverage rates of robots in unknown environments. A grid model is constructed for an environment and the positions of robots and barriers are deployed in the grid map randomly. The subsequent action choices and path plans of the robots are directed by the Qtable gained from the robots' self-learning of the QLCA,and the moving frequencies of robots are decreased. The effects of parameters such as the number of robots,environments on this algorithm are analyzed. The simulation results show: compared with the random chosen coverage algorithm( RSCA),the QLCA optimizes the coverage executing steps and redundancy obviously.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期792-798,812,共8页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61170201)
关键词 未知环境 Q-学习覆盖算法 机器人 区域覆盖 栅格模型 unknown environments Q-learning coverage algorithm robots area coverage grid model
  • 相关文献

参考文献14

  • 1蔡自兴,崔益安.多机器人覆盖技术研究进展[J].控制与决策,2008,23(5):481-486. 被引量:19
  • 2Watkins C J C H. Learning from delayed rewards[D].Cambridge,UK:King’ s College,University of Cambridge,1989.1-55.
  • 3Cheng Ke. Multi-robot coalition formation for distributed area coverage[D].Omaha,USA:Computer Science De-partment,University of Nebraska,2011.3-55.
  • 4Minsky M L. Theory of neural-analog reinforcement systems and its application to the brain-model problem[M].Princeton,USA:Princeton University,1954.5-23.
  • 5梁泉.未知环境中基于强化学习的移动机器人路径规划[J].机电工程,2012,29(4):477-481. 被引量:10
  • 6Fazli P,Davoodi A,Mackworth A K. Multi-robot repeated area coverage:Performance optimization under various visual ranges[A].Toronto,Canada:IEEE,2012.298-305.
  • 7Hazon N,Mieli F,Kaminka G A. Towards robust on-line multi-robot coverage[A].Singapore City,Singapore:IEEE,2006.1710-1715.
  • 8Jeon H S,Ko M C,Oh R. A practical robot coverage algorithm for unknown environments[M].Berlin,Germany:Springer-Verlag Berlin Heidelberg,2010.129-140.
  • 9张家旺,韩光胜,张伟.Q学习算法在RoboCup带球中的应用[J].系统仿真技术,2005,1(2):84-87. 被引量:3
  • 10Matignon L,Laurent G J,Le Fort-Piat N. Independent reinforcement learners in cooperative Markov games:A survey regarding coordination problems[J].The Knowledge Engineering Review,2012,(01):1-31.

二级参考文献59

  • 1秦政,丁福光,边信黔.强化学习在移动机器人自主导航中的应用[J].计算机工程与应用,2007,43(18):215-217. 被引量:5
  • 2[4]Kostiadis Kostas,Hu Huosheng.Reinforcement Learning and Co-operation in a Simulated Multi-agent System[A].In:Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 1999[C],17-21 Oct.1999,2:990-995.
  • 3[6]Piao Songhao,Hong Bingrong.Fast Reinforcement Learning Approach to Cooperative Behavior Acquisition in Multi-agent System[A].In:Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems[C],30 Sept.-5 Oct.2002,1:871-875.
  • 4Yoav Gabriely, Elon Rimon. Spiral-STC: An on-line coverage algorithm of grid environments by a mobile robot[C]. Proc of the IEEE Int Conf on Robotics and Automation. Washington, 2002: 954-960.
  • 5Zelinsky A, Jarvis R A, Byrne J C, et al. Planning paths of complete coverage of an unstructured environment by a mobile robots [C]. Int Conf on Advanced Robotics. Tokyo, 1993: 533-538.
  • 6Ercan Umut Acar. Complete sensorbased coverage of unknown spaces: Incremental construction of cellular decompositions [D]. Pennsylvania: Carnegie Mellon University, 2002.
  • 7Iwan R Ulrich, Francesco Mondada, Nicoud J D. Autonomous vacuum cleaner [ J ]. Robotics and Autonomous Systems, 1997,19 (3/4): 233-245.
  • 8Gerkey B P, MataricM J. A formal analysis and taxonomy of task allocation in multi-robot systems[J]. Int J of Robotics Research, 2004, 23(9): 939-954.
  • 9Min T W, Yin H K. A decentralized approach for cooperative sweeping by multiple mobile robots[C]. Proc of IEEE Int Conf on Intelligent Robots and Systems. Victoria, 1998: 380-385.
  • 10Wagner I A, Lindenbaum M, Bruckstein A M. MAC vs PC: Determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains [J]. Int J of Robotics Research, 2000, 19(1): 12-31.

共引文献29

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部