期刊文献+

双曲面麻花钻的参数节能优化 被引量:3

Energy-saving optimization of hyperboloid drill parameters
下载PDF
导出
摘要 双曲面麻花钻的后刀面刃磨参数及前刀面螺旋沟槽结构参数在很大程度上决定了其切削性能.以平面表像法为工具,建立了螺旋沟槽发生线为任意直线的双曲面麻花钻的主刃和横刃的切削角度计算模型.基于单元刀具线性综合法建立了钻削功率与刃磨参数及螺旋沟槽结构参数之间的关系模型,提出了以钻削功率最小为目标,应用约束遗传算法优化刃磨参数及螺旋沟槽结构参数的方法.与标准麻花钻相比,优化钻头的钻削功率平均降低了16.0%,扭矩平均降低了15.9%,轴向力平均降低了42.3%. The hyperboloid drill grinding and helical groove design parameters have a great impact on its cutting performance.Based on the Planar Displaying Method,a computation model was developed to calculate the main edge and the chisel edge cutting angles of a hyperboloid drill with arbitrary straight helical groove occurrence.A relationship model between the grinding,helical groove design parameters and drilling power was developed in the light of the linear synthesis method of elementary cutting tools.To achieve minimum drilling power,a method was proposed to optimize the grinding and helical groove design parameters based on the restriction genetic algorithms.The results showed that the drilling power,the torque and the axial force of the optimized drill reduces 16.0%,15.9% and 42.3% respectively compared with the standard drill.
作者 易格 熊良山
出处 《中国计量学院学报》 2013年第2期200-207,共8页 Journal of China Jiliang University
基金 国家自然科学基金资助项目(No.51075165)
关键词 双曲面 麻花钻 螺旋沟槽发生线 切削角度 钻削功率 hyperboloid twist drill helical groove occurrence cutting angle drilling power
  • 相关文献

参考文献10

  • 1Li Chao,Wang Min,Zuo Dunwen. Mathematical model and calculating method of parameters for twist drill hyperboloid grinding[J].Transactions of Nanjing University of Aeronautics and Astronautics,2002,(01):84-88.doi:10.3969/j.issn.1005-1120.2002.01.014.
  • 2曹正铨;龙腾辉;李朝晖.钻尖的数学模型与钻削试验研究[M]北京:北京理工大学出版社,199316-52.
  • 3Shi Hanmin,Zhang Huashu,Xiong Liangshan. A study on curved edge drills[J].Journal of Engineering for Industry,Transactions of the ASME,1994,(02):267-273.
  • 4Xiong Liangshan,Fang Ning,Shi Hanmin. A new methodology for designing a curve-edged twist drill with an arbitrarily given distribution of the cutting angles along the tool cutting edge[J].International Journal of Machine Tools and Manufacture,2009,(7,8):667-677.
  • 5Wang Janelin. Development of new drilling force models for improving drill point geometries[D].Michigan:The University of Michigan,1994.
  • 6Roukema J C. Mechanics and dynamics of drilling[D].Canada:The University of British Columbia,2007.
  • 7Paul A,Kapoor S G,Devor R E. A chisel edge model for arbitrary drill point geometry[J].Journal of Manufacturing Science and Engineering,2005,(01):23-32.doi:10.1115/1.1826076.
  • 8杨叔子;李 斌;张福润.机械加工工艺师手册[M]北京:机械工业出版社,2011110-118.
  • 9Abele E,Fujara M,Schafer D. Holistic approach for a simulation-based twist drill geometry optimization[A].Corvallis,Oregon,USA,2011.1-8.
  • 10王富民,张扬,田社平.遗传算法与惩罚函数法在机械优化设计中的应用[J].中国计量学院学报,2004,15(4):290-293. 被引量:16

二级参考文献4

  • 1[3]BACK T,HOFFMEISTER F. Extended selection mechanisms in genetic algorithms[J]. Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, California. USA: Morgan Kaufmann Publishers,1991,92-99.
  • 2[4]MUHLENBEIN H,SCHLIERKAMP-VOOSEN D. Predictive Models for the Breeder Genetic Algorithm: I [J].Continuous Parameter Optimization. Evolutionary Computation, 1993,1(1):25-49.
  • 3玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 4高玉根,王国彪,丁予展.遗传算法在机械优化设计中的应用现状及展望[J].机械,2002,29(3):8-11. 被引量:13

共引文献15

同被引文献29

  • 1靳晓强.双向Dijkstra算法及中间链表加速方法[J].计算机仿真,2004,21(9):78-81. 被引量:11
  • 2时林,傅蔡安.基于UG的标准麻花钻三维实体建模及其角度测量[J].现代制造工程,2005(12):100-102. 被引量:10
  • 3王景存,张晓彤,陈彬,陈和平.一种基于Dijkstra算法的启发式最优路径搜索算法[J].北京科技大学学报,2007,29(3):346-350. 被引量:27
  • 4Dijkstra E W.A note on two problems in connexion with graphs[J].Numerische Mathematik,1959,1(1):69-271.
  • 5Deo N,Pang C Y.Shortest-path algorithms:taxonomy and annotation[J].Networks,1984,14(2):275-323.
  • 6Pallottino S.Shortest-path methods:complexity,interrelations and new propositions[J].Networks,1984,14(2):257-267.
  • 7Fredman M L,Tarja R E.Fibonacci heaps and their uses in improved network optimization algorithms[J].Journal of the Association for Computing Machinery,1987,34(3):596-615.
  • 8Cherkassky B V,Goldberg A V,Radzik T.Shortest paths algorithms:theory and experimental evaluation[J].Mathematical Programming,1996,73(2):129-174.
  • 9Ahuja R K,Magnanti T L,Orling J B.Network flows:theory,algorithms and applications[M].Englewood Cliffs:Prentice Hall,1993.
  • 10Chabini I,Lan S.Adaptations of the A*algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks[J].IEEE Trans Intell Transp Syst,2002,3(1):60-74.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部