期刊文献+

基于局部特征预测的栅格地图创建 被引量:1

Grid map building based on prediction of local features
下载PDF
导出
摘要 为解决利用声纳传感器进行地图创建时容易出现检测不到障碍物或产生虚假障碍物的问题,提出了一种利用局部几何特征提高地图精确度和可靠性的方法.利用连续几次可靠的声纳信息预测机器人周围局部环境中几何特征的位置与方向,并根据几何特征计算当前声纳数据的置信度.在全局地图更新中,删除置信度低于设定阈值的声纳数据,从而根据置信度降低不确定信息对地图创建的影响.实验结果证明本方法可以有效地提高地图的精确度. In order to build more precise and stable map with sonar sensors, a method based on prediction of local geometrical features is proposed. The position and orientation of features in the robot's local space are predicted from reliable sonar readings, and confidence measures are assigned to each sonar reading to indicate the probability that it is reliable. The confidence values are used to weaken the effect of uncertain sonar readings on the global map, and to discard the readings completely if the confidence value is sufficiently low. Experiments carried out on Pioneer2 robot prove that the method performs well.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2004年第7期877-879,共3页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(863-2002AA735041).
关键词 栅格地图 地图创建 声纳传感器 移动机器人 Algorithms Collision avoidance Mapping Navigation Sensors Sonar
  • 引文网络
  • 相关文献

参考文献6

  • 1王卫华,陈卫东,席裕庚.移动机器人地图创建中的不确定传感信息处理[J].自动化学报,2003,29(2):267-274. 被引量:27
  • 2[2]TARDOS J D, NEIRA J. Robust mapping and localization in indoor environments using sonar[ J]. Int Journal of Robotics Research, 2002, 21(4): 311 -3301.
  • 3[3]WIJK O, CHRISTENSEN H I. Triangulation based fusion of sonar data with application in robot pose tracking [ J ]. IEEE Trans Robot Automation, 2001, 6 (6):740 - 752.
  • 4[4]PAVLIN G, BRAUNSTINGL R. Context-based feature extraction with wide-angle sonars [ A ]. Proceedings of International Conference on Intelligent Robots and Systems[ C]. [ s. l. ]: IEEE, 2000.
  • 5[5]KONOLIGE K. Improved occupancy grids for map building [ J ]. Autonomous Robots, 1997, 4 (4): 351 - 367.
  • 6[6]MORAVEC H P, ELFES A. High resolution maps from wide angle sonar[ A ]. Proceedings of International Conference on Robotics and Automtion[C]. [s. l. ]: IEEE,1985.

二级参考文献1

共引文献26

同被引文献11

  • 1庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究[J].控制与决策,2005,20(7):815-818. 被引量:25
  • 2Gyu-jong Choi,Doo-Sung Ahn.Map Building and Localization on Autonomous Mobile Robot Using Graph and Fuzzy Inference System,[C]// The Proceedings of IEEE IJCNN,Budapest,Hungary,2004:2419-2424.
  • 3T Kohonen.The Self-organizing Map[J] Proceedings of the IEEE,(S0018-9219),1990,78(9):1464-1480.
  • 4T Kohonen.Generalizations of the Self-organizing Map[C]// Proceedings of IEEE IJCNN,Nagoya,Japan,1993:457-462.
  • 5JARI A KANGAS,TEUVO KOHONEN.Variants of Self-Organizing Maps[J].IEEE Transactions on Neural networks (S1045-9227),1990,1(1):93-99.
  • 6B Fritzke.Growing cell structures-a self-organizing network for unsupervised and supervised learning[J].Neural Networks (S0893-6080),1994,7(9):1411-1460.
  • 7JUNG-HUAWANG,WEI-DER SUN.On the Characteristics of Growing Cell Structures (GCS) Neural Network[J].Neural Processing Letters (S1370-4621),1999,10(2):139-149.
  • 8Guojian Cheng,Tianshi Liu,Xiaoxiao Wang,Quanzhou Huang.Rapid Training for Self-Organizing Neural Networks with Incremental Learning[C]// The Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06).QuFu,China,2006:28-31.
  • 9Soledad Delgado,Consuelo Gonzalo,Estíbaliz Martínez,Agueda Arquero.Improvement of Self-Organizing Maps with Growing Capability for Goodness Evaluation of Multispectral Training Patterns,[C]// The Proceedings of IEEE IGARSS,Anchorage,USA,2004:564-567.
  • 10迟健男,徐心和.移动机器人即时定位与地图创建问题研究[J].机器人,2004,26(1):92-96. 被引量:53

引证文献1

二级引证文献3

;
使用帮助 返回顶部