摘要
针对传统的预测函数控制对非线性强、结构多变的实际对象控制效果不佳问题,提出了一种基于Wiener模型的非线性预测函数控制(PFC)方法。通过引入支持向量机回归方法,建立Wiener模型中非线性部分的逆模型,在输出反馈和参考轨迹上分别添加一个Wiener模型中非线性部分的逆模型,将非线性预测函数控制转化为线性预测函数控制,用线性优化算法解决非线性预测函数控制问题,避免了复杂的非线性优化。pH中和过程的计算机仿真结果表明,该方法比PID控制效果更好,而且对模型失配具有很好的自适应性能。
针对传统的预测函数控制对非线性强、结构多变的实际对象控制效果不佳问题,提出了一种基于Wiener模型的非线性预测函数控制(PFC)方法。通过引入支持向量机回归方法,建立Wiener模型中非线性部分的逆模型,在输出反馈和参考轨迹上分别添加一个Wiener模型中非线性部分的逆模型,将非线性预测函数控制转化为线性预测函数控制,用线性优化算法解决非线性预测函数控制问题,避免了复杂的非线性优化。pH中和过程的计算机仿真结果表明,该方法比PID控制效果更好,而且对模型失配具有很好的自适应性能。
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2011年第S1期264-269,共6页
Journal of Jilin University:Engineering and Technology Edition
基金
"863"国家高技术研究发展计划重点项目(2006AA020301)