期刊文献+

利用辅助数据的荒漠区高分辨率遥感分类研究 被引量:4

High-resolution Remote Sensing Classification Using Auxiliary Data in Desert-mountain Area
下载PDF
导出
摘要 使用美国NAIP高分辨率航空遥感影像,在多尺度、多变量影像分割的基础上,采用决策树方法建立干旱区半干旱区的荒漠分类规则,并结合水系、道路等辅助地理数据进行干旱区半干旱区面向对象遥感分类。选择位于美国亚利桑那州菲尼克斯大都市区的周边典型荒漠地区为实验区,利用河流、道路等辅助数据进行面向对象遥感分类效果要优于单纯依靠遥感影像的分类,能够有效地提取季节性河流和简易道路。研究对美国亚利桑那州菲尼克斯都市区周边的同一荒漠地区进行了实验,利用决策规则有效提取植被和荒地,以及提取简易道路和土壤,分类总精度从常规面向对象分类方法的82.85%提高到92.45%。研究结果表明:本文提出的分类方法对荒漠地区的泥土路和灌木及其整体分类精度有较大提高。利用辅助数据进行遥感分类可以改善特定研究区的高分辨率遥感影像分类精度。 Because of the presence of seasonal rivers and unpaved roads in semi-arid area,it is difficult to perform classification with high-resolution remote sensing imagery especially in desert areas.This study improves the results of high-resolution remote sensing overall classification by using ancillary data.In this paper,object-oriented remote sensing classification in semi-arid region was performed with the National Agriculture Imagery Program(NAIP)High resolution aerial remote sensing images and geographic auxiliary data such as drainage and road data.After using the multi-resolution and multi-variable image segmentation,decision tree was used to establish classification rules in object-objected classification.A typical desert-mountain area surrounding Phoenix Metropolitan Areas,Arizona,USA was selected as the experimental region.Experimental results showed that the classification results of object-oriented remote sensing with the use of geographic auxiliary data were better than that only using the remote sensing images,and the seasonal rivers or unpaved roads were efficiently classified from desert or vegetation areas.In the experiment,vegetation and barren were effectively extracted with the decision rule,and the same to unpaved road and soil,with the overall classification accuracy increased from 82.85%to 92.45%.The results show that the classification accuracy of unpaved road and shrub as well as overall classification accuracy were greatly improved.High-resolution remote sensing classification using auxiliary data can improve the classification accuracy in specific research area.
出处 《遥感信息》 CSCD 2013年第5期77-84,共8页 Remote Sensing Information
基金 高等学校学科创新引智计划(B08048)
关键词 面向对象 多尺度分割 高分辨率遥感影像 辅助地理数据 决策树 object-oriented multi-scale segmentation high-resolution remote sensing ancillary geographic data decision tree
  • 相关文献

参考文献31

二级参考文献46

  • 1周俊,晏非,孙曼.基于区域分割合并的建筑物半自动提取方法[J].海洋测绘,2005,25(1):58-60. 被引量:7
  • 2Graetz R D,Pech R R,Davis A W.The Assessment and Monitoring of Sparsely Vegetated Rangelands Using Calibrated Landsat Data.International Journal of Remote Sensing,1988,9(7):1 201~1 222.
  • 3Dymond J R,Stephens P R,Newsome P F, et al.Percent Vegetation Cover of a Degrading Rangeland from SPOT. International Journal of Remote Sensing,1992,13(11):1 999~2 007.
  • 4Wittich K P,Hansing O.Area-averaged Vegetative Cover Fraction Estimated from Satellite Data.International Journal of Biometerology,1995,38(3):209~215.
  • 5Quamby N A,Townshend J R G,Settle J J, et al.Linear Mixture Modeling Applied to AHVRR Data for Erop Area Estimation.International Journal of Remote Sensing,1992,13(3):415~425.
  • 6Gutman G,Ignatov A.The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Nurderical Weather Prediction Models. International Journal of Remote Sensing,1998,19(8):1 533~1 543.
  • 7周成虎 骆剑承 杨晓梅.遥感图像地学理解与分析[M].北京:科学出版社,2001..
  • 8SKIDMORE A,TURNER B,BRINKHOF W,et al.Performance of neural network:Mapping forests using GIS and remotely sensed data[J].ISPRS Journal of Photogrammetric Engineering & Remote Sensing,1997,63:501-514.
  • 9MASELLI F,RUDOLF A,CONESE C.Fuzzy classification of spatially degraded Thematic Mapper data for the estimation of sub-pixel components[J].International Journal of Remote Sensing,1996,17:537-551.
  • 10LOBO A,CHIC O,CASTERAD A.Classification of mediterranean crops with multisensor data:Per-pixel versus per-object statistics and image segmentation[J].International Journal of Remote Sensing,1996,17(12):2385-2400.

共引文献340

同被引文献38

  • 1杨柏林,王兴理,王忠圣.岩石和矿物的反射光谱特征及其应用[J].地球化学,1987,16(1):89-96. 被引量:17
  • 2明冬萍,骆剑承,沈占锋,汪闽,盛昊.高分辨率遥感影像信息提取与目标识别技术研究[J].测绘科学,2005,30(3):18-20. 被引量:108
  • 3柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:59
  • 4肖鹏峰,冯学智,赵书河,佘江峰.基于相位一致的高分辨率遥感图像分割方法[J].测绘学报,2007,36(2):146-151. 被引量:55
  • 5Shackelford A K,Davis C H.A Combined Fuzzy Pixelbased and Object-based Approach for Classification of High-resolution Multispectral Data over Urban Areas[C]//IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2354-2363.
  • 6Arroyo L A,Healey S P,Cohen W B,et al.Using Object-oriented Classification and High-resolution Imagery to Map Fuel Types in a Mediterranean Region[J].Journal of Geophysical Research-Biogeosciences,2006:111-119.
  • 7Platt R V,Rapoza L.An Evaluation of an Object-oriented Paradigm for Land Use/Land Cover Classification[J].The Professional Geographer,2008,60(1):87-100.
  • 8Stow D,Lopez A,Lippitt C,et al.Object-based Classification of Residential Land Use within Accra,Ghana based on QuickBird Satellite Data[J].Intenational Journal of Remote Sensing,2007,28(22):5167-5173.
  • 9Su W,Li J,Chen Y,et al.Textural and Local Spatial Statistics for the Object-oriented Classification of Urban Areas Using High Resolution Imagery[J].International Journal of Remote Sensing,2008,29(11):3105-3117.
  • 10Cleve C,Kelly M,Kearns F R,et al.Classification of the Wild Land-urban Interface:A Comparison of Pixel and Object-based Classification Using High-resolution Aerial Photography[J].Computers,Environment and Urban Systems,2008,32(4):317-326.

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部