期刊文献+

基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法 被引量:19

Roller bearing fault diagnosis based on local mean decomposition and morphological fractal dimension
下载PDF
导出
摘要 针对滚动轴承振动信号通常具有非线性与低信噪比特点,提出基于局部均值分解(Local Mean Decomposition,LMD)与形态学分形维数的滚动轴承故障诊断方法。采用LMD将滚动轴承振动信号分解为若干个乘积函数(Product Function,PF)分量,计算包含有滚动轴承故障特征的PF分量形态学分形维数,并将其用作特征量判断滚动轴承工作状态及故障类型。实验分析结果表明,该方法能有效用于滚动轴承的故障诊断。 The vibration signals of roller bearings usually appear with the specialities of nonlinearity and low signal to noise ratio. In view of this problem, a roller bearing fault diagnosis method based on local mean decomposition (LMD) and morphological fractal dimension was proposed. In the method, the roller bearing vibration signal was decomposed into a set of product functions (PFs) by LMD, and then the morphological fractal dimension of PF which contain the roller bearing fault characteristics was calculated, and adopted as a characteristic parameter to judge the roller bearing working conditions and fault types. The experimental results indicate that the method can be applied to the roller bearing fault diagnosis effectively.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第9期90-94,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51075131) 教育部长江学者与创新团队发展计划(531105050037) 湖南省自然科学基金资助项目(11JJ2026)
关键词 局部均值分解 形态学 分形维数 滚动轴承 故障诊断 Failure analysis Fractal dimension Morphology Roller bearings
  • 相关文献

参考文献12

二级参考文献65

共引文献363

同被引文献184

引证文献19

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部