期刊文献+

应用人工蜂群算法辨识潜器参数 被引量:4

Identification on hydrodynamic coefficients of underwater vehicle with the ABC algorithm
下载PDF
导出
摘要 针对确定水下潜器参数试验和理论计算困难的问题,提出基于基本人工蜂群算法及改进人工蜂群方法辨识潜器系数的方法.基于潜器模型,通过改进蜜蜂的搜索模式、引入禁忌表等方法解决蜂群算法早熟的问题,然后选取典型操舵机动分别对原始和改进的蜂群算法进行实验仿真.通过对比参数辨识前后的仿真图,表明应用人工蜂群算法辨识潜器参数是可行的;通过对比蜂群算法改进前后的仿真图,表明改进方法的有效性. Aiming at the difficulty of traditional hydrodynamic coefficients experiments and theoretical calculation method, an initial and improved artificial bee colony ( ABC) algorithm was proposed to identify the hydrodynamic coefficients of an automatic underwater vehicle ( AUV) . Based on the simplified AUV model, the problem of ABC premature was solved by mending bee search model and introducing the tabu table. Then typical maneuverability ex-periments were chosen to simulate the initial and identified ABC algorithms, respectively. By comparing the simula-tion figures before and after parameter identification, it shows that applying ABC to identify the coefficients of AUV is feasible. By comparing the simulation figures of the initial and improved ABC algorithms, the validity of the im-provement was proved.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第8期1023-1027,共5页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(608340085)
关键词 水下潜器 人工蜂群算法 水动力系数 参数辨识 禁忌表 Algorithms Experiments Fluid dynamics Identification (control systems) Maneuverability Sailing vessels
  • 相关文献

参考文献15

  • 1袁伟杰,刘贵杰,朱绍锋.基于遗传算法的自治水下机器人水动力参数辨识方法[J].机械工程学报,2010,46(11):96-100. 被引量:24
  • 2田亚杰;边信黔.应用全局最小二乘法辨识AUV运动参数[J]控制理论与应用,2006(02):4-7.
  • 3RIDAO P,BATLLE J,CARRERAS M. Model identification of a low-speed UUV[A].Glasgow,UK,2003.47-52.
  • 4刘建成,刘学敏,徐玉如.极大似然法在水下机器人系统辨识中的应用[J].哈尔滨工程大学学报,2001,22(5):1-4. 被引量:20
  • 5CHATCHANAYUENYONG T,PARNICHKUM M. Neural network based-time optimal sliding mode control for an au-tonomous underwater robot[J].Mechatronics,2006,(08):471-478.doi:10.1016/j.mechatronics.2006.02.003.
  • 6VAN DE VEN P W J,JOHANSEN T A,SQRENSEN J A. Neural network augmented identification of underwater vehicle models[J].Control Engineering Practice,2007,(06):715-725.doi:10.1016/j.conengprac.2005.11.004.
  • 7胡坤,王树宗,徐亦凡.基于免疫遗传算法的潜艇水动力系数优化研究[J].兵工学报,2008,29(12):1532-1536. 被引量:4
  • 8KARABOGA D,OZTURK C. Neural networks training by artificial bee colony algorithm on pattern classification[J].Neural Network World,2009,(03):279-292.
  • 9KARABOGA D,OZTURK C. A novel clustering approach:artificial bee colony (ABC) algorithm[J].Applied Soft Computing Journal,2011,(01):652-657.
  • 10KARABOGA D,AKAY B. A modified artificial bee colony (ABC) algorithm for constrained optimization problems[J].Applied Soft Computing Journal,2011,(03):3021-3031.

二级参考文献33

  • 1吕军,冯博琴,李波.免疫遗传算法及其应用研究[J].微电子学与计算机,2005,22(6):221-224. 被引量:22
  • 2段玉波,任伟建,霍凤财,董宏丽.一种新的免疫遗传算法及其应用[J].控制与决策,2005,20(10):1185-1188. 被引量:36
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 4胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 5蔡金狮.动力学系统辨识与建模[M].北京:国防工业出版社,1994..
  • 6Barr R A. A review and comparison of ship maneuvering methods [J]. SNAME Transaction, 1993, 101:609 - 635.
  • 7徐亦凡 陈克 张本文.潜艇运动数学模型的仿真与实验分析.系统仿真学报,2004,6(9):484-488.
  • 8Cheng R, Gen M. An adaptive superplane approach for multiple objective optimization problems [ R ]. Ashikaga, Japan: Ashikaga Institute of Technology, 1998.
  • 9Debabrata Sen. A study on sensitivity of maneuverability performance on the hydrodynamic coefficients for submerged bodies[J ]. Journal of Ship Research, 2000, 44(3) : 186 - 196.
  • 10RIDAO P,BATLLE J,CARRERAS M.Model identification of a low-speed uuv[c] H Proceedings of the 1st IFAC Workshop on Guidance and Control of Underwater Vehicles,2003,Glasgow,Scotland.UK:IFAC,2003:47-52.

共引文献77

同被引文献70

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部